Literature

Concept

The concept and the implemented models are described in detail in the following references:

  • F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale Computational Materials Science, 158:420–478, 2019. doi:10.1016/j.commatsci.2018.04.030.

  • F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe. DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver In O. Cazacu, editor, Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties, volume 3, 3–10. Elsevier, 2012. doi:10.1016/j.piutam.2012.03.001.

Crystal Plasticity Overview

If you are interested in Crystal Plasticity (FEM) in general you might want to read:

  • F. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. Wiley-VCH, 2010. doi:10.1002/9783527631483.

  • F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications Acta Materialia, 58(4):1152–1211, 2010. doi:10.1016/j.actamat.2009.10.058.

Constitutive Models for Plasticity

Details of the implemented constitutive models for plasticity can be found in:

  • D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, and J. Marian. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations International Journal of Plasticity, 78:242–265, 2016. doi:10.1016/j.ijplas.2015.09.002.

  • D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J.M. Perlado, and J. Marian. Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength GAMM Mitteilungen, 38(2):213–227, 2015. doi:10.1002/gamm.201510012.

  • N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao. Orientation dependence of shear banding in face-centered-cubic single crystals Acta Materialia, 60(8):3415–3434, 2012. doi:10.1016/j.actamat.2012.03.005.

  • Christoph Kords. On the role of dislocation transport in the constitutive description of crystal plasticity. PhD thesis, RWTH Aachen, 2013. URL: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/4862.

  • T. Maiti and P. Eisenlohr. Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces Scripta Materialia, 145:37–40, 2018. doi:10.1016/j.scriptamat.2017.09.047.

  • C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe. Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments Acta Materialia, 71:333–348, 2014. doi:10.1016/j.actamat.2014.03.012.

  • S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe. A crystal plasticity model for twinning- and transformation-induced plasticity Acta Materialia, 118:140–151, 2016. doi:10.1016/j.actamat.2016.07.032.

Homogenization

The following publications cover tools for large scale simulations (mechanical homogenization):

  • P. Eisenlohr and F. Roters. Selecting a set of discrete orientations for accurate texture reconstruction Computational Materials Science, 42(4):670–678, 2008. doi:10.1016/j.commatsci.2007.09.015.

  • D.D. Tjahjanto, P. Eisenlohr, and F. Roters. A novel grain cluster-based homogenization scheme Modelling and Simulation in Materials Science and Engineering, 2010. doi:10.1088/0965-0393/18/1/015006.

Spectral Solvers

The spectral solvers provided with DAMASK are explained in:

  • P. Eisenlohr, M. Diehl, R.A. Lebensohn, and F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains International Journal of Plasticity, 46:37–53, 2013. doi:10.1016/j.ijplas.2012.09.012.

  • P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe. Spectral solvers for crystal plasticity and multi-physics simulations. Springer Singapore, 2019. doi:10.1007/978-981-10-6884-3_80.

  • P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials International Journal of Plasticity, 66:31–45, 2015. doi:10.1016/j.ijplas.2014.02.006.

Damage and Fracture

Details of the models for damage and fracture are outlined in:

  • P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe. A phase field model for damage in elasto-viscoplastic materials Computer Methods in Applied Mechanics and Engineering, 312:167–185, 2016. doi:10.1016/j.cma.2016.05.006.

  • P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, and D. Raabe. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture Journal of the Mechanics and Physics of Solids, 99:19–34, 2017. doi:10.1016/j.jmps.2016.10.012.

Data Storage

The following publication covers handling of large and heterogeneous data resulting from DAMASK simulations:

  • M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters. A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations Integrating Materials and Manufacturing Innovation, 6(1):83–91, 2017. doi:10.1007/s40192-017-0084-5.