DAMASK Overview Paper Citations

2021

  • [DOI] T. Fischer, S. Ulan kyzy, O. Munz, and E. Werner, “Structure-property relationship of a nickel-based honeycomb sealing composite,” Computational Materials Science, vol. 190, 2021.
    [Bibtex]
    @ARTICLE{Fischer2021,
    author={Fischer, T. and Ulan kyzy, S. and Munz, O. and Werner, E.},
    title={Structure-property relationship of a nickel-based honeycomb sealing composite},
    journal={Computational Materials Science},
    year={2021},
    volume={190},
    doi={10.1016/j.commatsci.2020.110270},
    art_number={110270},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099710786&doi=10.1016%2fj.commatsci.2020.110270&partnerID=40&md5=5d314e7a28bf019d3a358e2d8b936097},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Y. Fu, M. Lv, Q. Zhao, H. Zhang, and Z. Cui, “Investigation on the size and distribution effects of O phase on fracture properties of Ti2AlNb superalloy by using image-based crystal plasticity modeling,” Materials Science and Engineering A, vol. 805, 2021.
    [Bibtex]
    @ARTICLE{Fu2021,
    author={Fu, Y. and Lv, M. and Zhao, Q. and Zhang, H. and Cui, Z.},
    title={Investigation on the size and distribution effects of O phase on fracture properties of Ti2AlNb superalloy by using image-based crystal plasticity modeling},
    journal={Materials Science and Engineering A},
    year={2021},
    volume={805},
    doi={10.1016/j.msea.2021.140787},
    art_number={140787},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099844264&doi=10.1016%2fj.msea.2021.140787&partnerID=40&md5=06551b96f9ee231181fd050c290e9eb9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Gao, H. Wang, L. Xing, C. Ma, Y. Li, G. Sha, and H. Ren, “The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels,” Materials Science and Engineering A, vol. 805, 2021.
    [Bibtex]
    @ARTICLE{Gao2021,
    author={Gao, X. and Wang, H. and Xing, L. and Ma, C. and Li, Y. and Sha, G. and Ren, H.},
    title={The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels},
    journal={Materials Science and Engineering A},
    year={2021},
    volume={805},
    doi={10.1016/j.msea.2020.140547},
    art_number={140547},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096615321&doi=10.1016%2fj.msea.2020.140547&partnerID=40&md5=8cbe97f3737d9f78711e8428444d7c9a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] L. Sharma, R. H. J. Peerlings, M. G. D. Geers, and F. Roters, “Integral nonlocal approach to model interface decohesion in FFT solvers,” Engineering Fracture Mechanics, vol. 243, 2021.
    [Bibtex]
    @ARTICLE{Sharma2021,
    author={Sharma, L. and Peerlings, R.H.J. and Geers, M.G.D. and Roters, F.},
    title={Integral nonlocal approach to model interface decohesion in FFT solvers},
    journal={Engineering Fracture Mechanics},
    year={2021},
    volume={243},
    doi={10.1016/j.engfracmech.2020.107516},
    art_number={107516},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098938466&doi=10.1016%2fj.engfracmech.2020.107516&partnerID=40&md5=1bcd43275a208a47d2f733c9b074c4f5},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, S. Guk, R. Kawalla, and U. Prahl, “On attempting to create a virtual laboratory for application-oriented microstructural optimization of multi-phase materials,” Applied Sciences (Switzerland), vol. 11, iss. 4, pp. 1-25, 2021.
    [Bibtex]
    @ARTICLE{Qayyum20211,
    author={Qayyum, F. and Guk, S. and Kawalla, R. and Prahl, U.},
    title={On attempting to create a virtual laboratory for application-oriented microstructural optimization of multi-phase materials},
    journal={Applied Sciences (Switzerland)},
    year={2021},
    volume={11},
    number={4},
    pages={1-25},
    doi={10.3390/app11041506},
    art_number={1506},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100836185&doi=10.3390%2fapp11041506&partnerID=40&md5=6844c25a225132cb277745a58eecb6a9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] V. K. Verma, C. K. Gopalakrishnan, S. Hamada, T. Yokoi, and H. Noguchi, “Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack,” International Journal of Fatigue, vol. 143, 2021.
    [Bibtex]
    @ARTICLE{Verma2021,
    author={Verma, V.K. and Gopalakrishnan, C.K. and Hamada, S. and Yokoi, T. and Noguchi, H.},
    title={Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack},
    journal={International Journal of Fatigue},
    year={2021},
    volume={143},
    doi={10.1016/j.ijfatigue.2020.106017},
    art_number={106017},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094880189&doi=10.1016%2fj.ijfatigue.2020.106017&partnerID=40&md5=1dcdb0bd813199cafb7e31bc66e6cc65},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Boåsen, C. F. O. Dahlberg, P. Efsing, and J. Faleskog, “A weakest link model for multiple mechanism brittle fracture — Model development and application,” Journal of the Mechanics and Physics of Solids, vol. 147, 2021.
    [Bibtex]
    @ARTICLE{Boåsen2021,
    author={Boåsen, M. and Dahlberg, C.F.O. and Efsing, P. and Faleskog, J.},
    title={A weakest link model for multiple mechanism brittle fracture — Model development and application},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2021},
    volume={147},
    doi={10.1016/j.jmps.2020.104224},
    art_number={104224},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097054128&doi=10.1016%2fj.jmps.2020.104224&partnerID=40&md5=c217efe820fbfb5da54f905fdcd1afb0},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. -J. Gallardo-Basile, Y. Naunheim, F. Roters, and M. Diehl, “Lath martensite microstructure modeling: A high-resolution crystal plasticity simulation study,” Materials, vol. 14, iss. 3, pp. 1-20, 2021.
    [Bibtex]
    @ARTICLE{Gallardo-Basile20211,
    author={Gallardo-Basile, F.-J. and Naunheim, Y. and Roters, F. and Diehl, M.},
    title={Lath martensite microstructure modeling: A high-resolution crystal plasticity simulation study},
    journal={Materials},
    year={2021},
    volume={14},
    number={3},
    pages={1-20},
    doi={10.3390/ma14030691},
    art_number={691},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100457615&doi=10.3390%2fma14030691&partnerID=40&md5=621c60982378cd4417e660b31d44f552},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Cappola, J. -C. Stinville, M. -A. Charpagne, P. G. Callahan, M. P. Echlin, T. M. Pollock, A. Pilchak, and M. Kasemer, “On the Localization of Plastic Strain in Microtextured Regions of Ti-6Al-4V,” Acta Materialia, vol. 204, 2021.
    [Bibtex]
    @ARTICLE{Cappola2021,
    author={Cappola, J. and Stinville, J.-C. and Charpagne, M.-A. and Callahan, P.G. and Echlin, M.P. and Pollock, T.M. and Pilchak, A. and Kasemer, M.},
    title={On the Localization of Plastic Strain in Microtextured Regions of Ti-6Al-4V},
    journal={Acta Materialia},
    year={2021},
    volume={204},
    doi={10.1016/j.actamat.2020.116492},
    art_number={116492},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097131811&doi=10.1016%2fj.actamat.2020.116492&partnerID=40&md5=602e6f48792a9296d2bc31d2bc641527},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Lin, C. Zimmermann, K. Wang, M. Hunkel, U. Prahl, and R. Spatschek, “Modeling bainitic transformations during press hardening,” Materials, vol. 14, iss. 3, pp. 1-27, 2021.
    [Bibtex]
    @ARTICLE{Lin20211,
    author={Lin, M. and Zimmermann, C. and Wang, K. and Hunkel, M. and Prahl, U. and Spatschek, R.},
    title={Modeling bainitic transformations during press hardening},
    journal={Materials},
    year={2021},
    volume={14},
    number={3},
    pages={1-27},
    doi={10.3390/ma14030654},
    art_number={654},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100562659&doi=10.3390%2fma14030654&partnerID=40&md5=dd14bd33b504f18fec9e7ea943bdc84d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Sprengel, R. Saliwan Neumann, B. Skrotzki, and A. Evans, “Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study,” Materials Science and Engineering A, vol. 799, 2021.
    [Bibtex]
    @ARTICLE{Charmi2021,
    author={Charmi, A. and Falkenberg, R. and Ávila, L. and Mohr, G. and Sommer, K. and Ulbricht, A. and Sprengel, M. and Saliwan Neumann, R. and Skrotzki, B. and Evans, A.},
    title={Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study},
    journal={Materials Science and Engineering A},
    year={2021},
    volume={799},
    doi={10.1016/j.msea.2020.140154},
    art_number={140154},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090124150&doi=10.1016%2fj.msea.2020.140154&partnerID=40&md5=94c0b9f828657751cac87ae812588e55},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli, E. Tarleton, and A. C. F. Cocks, “Neper2CAE and PyCiGen: Scripts to generate polycrystals and interface elements in Abaqus,” SoftwareX, vol. 13, 2021.
    [Bibtex]
    @ARTICLE{Grilli2021,
    author={Grilli, N. and Tarleton, E. and Cocks, A.C.F.},
    title={Neper2CAE and PyCiGen: Scripts to generate polycrystals and interface elements in Abaqus},
    journal={SoftwareX},
    year={2021},
    volume={13},
    doi={10.1016/j.softx.2020.100651},
    art_number={100651},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098981099&doi=10.1016%2fj.softx.2020.100651&partnerID=40&md5=faa3e7c270a9316ba963e0b1c35e739c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. H. Khafagy, S. Datta, and A. Chattopadhyay, “Multiscale characterization and representation of variability in ceramic matrix composites,” Journal of Composite Materials, 2021.
    [Bibtex]
    @ARTICLE{Khafagy2021,
    author={Khafagy, K.H. and Datta, S. and Chattopadhyay, A.},
    title={Multiscale characterization and representation of variability in ceramic matrix composites},
    journal={Journal of Composite Materials},
    year={2021},
    doi={10.1177/0021998320978445},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100584518&doi=10.1177%2f0021998320978445&partnerID=40&md5=0759b7a207e40497b9cf3850878d51af},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, M. Umar, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl, “Effect of the 3rd dimension within the representative volume element (Rve) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels,” Materials, vol. 14, iss. 1, pp. 1-20, 2021.
    [Bibtex]
    @ARTICLE{Qayyum20211,
    author={Qayyum, F. and Umar, M. and Guk, S. and Schmidtchen, M. and Kawalla, R. and Prahl, U.},
    title={Effect of the 3rd dimension within the representative volume element (Rve) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels},
    journal={Materials},
    year={2021},
    volume={14},
    number={1},
    pages={1-20},
    doi={10.3390/ma14010042},
    art_number={42},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098746673&doi=10.3390%2fma14010042&partnerID=40&md5=05d419cf66672d6a914e7ef2d2bf1f3f},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] G. Falkinger and S. Mitsche, “Numerical investigation of the effect of rate-sensitivity, non-octahedral slip and grain shape on texture evolution during hot rolling of aluminum alloys,” Modelling and Simulation in Materials Science and Engineering, vol. 29, iss. 1, 2021.
    [Bibtex]
    @ARTICLE{Falkinger2021,
    author={Falkinger, G. and Mitsche, S.},
    title={Numerical investigation of the effect of rate-sensitivity, non-octahedral slip and grain shape on texture evolution during hot rolling of aluminum alloys},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2021},
    volume={29},
    number={1},
    doi={10.1088/1361-651X/abcb4d},
    art_number={015006},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098259310&doi=10.1088%2f1361-651X%2fabcb4d&partnerID=40&md5=98c6ae2295a9243f0e9a5a2f790a69ba},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Zhang, S. Lu, B. Zhang, X. Tian, Q. Kan, and G. Kang, “Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations,” Acta Materialia, vol. 202, pp. 88-98, 2021.
    [Bibtex]
    @ARTICLE{Zhang202188,
    author={Zhang, X. and Lu, S. and Zhang, B. and Tian, X. and Kan, Q. and Kang, G.},
    title={Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations},
    journal={Acta Materialia},
    year={2021},
    volume={202},
    pages={88-98},
    doi={10.1016/j.actamat.2020.10.052},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094879614&doi=10.1016%2fj.actamat.2020.10.052&partnerID=40&md5=02a6d8e19154e8a4b5837f866e117a7a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Tran and T. Wildey, “Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning,” JOM, vol. 73, iss. 1, pp. 72-89, 2021.
    [Bibtex]
    @ARTICLE{Tran202172,
    author={Tran, A. and Wildey, T.},
    title={Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning},
    journal={JOM},
    year={2021},
    volume={73},
    number={1},
    pages={72-89},
    doi={10.1007/s11837-020-04432-w},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096371357&doi=10.1007%2fs11837-020-04432-w&partnerID=40&md5=a4b2309b321c06b7c8c08add01ada716},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Wang, X. Wang, C. Wang, G. Wu, and Y. Lai, “A comparative study of plastic deformation behaviors of OFHC copper based on crystal plasticity models in conjunction with phenomenological and dislocation density-based hardening laws,” Journal of Materials Science, 2021.
    [Bibtex]
    @ARTICLE{Wang2021,
    author={Wang, C. and Wang, X. and Wang, C. and Wu, G. and Lai, Y.},
    title={A comparative study of plastic deformation behaviors of OFHC copper based on crystal plasticity models in conjunction with phenomenological and dislocation density-based hardening laws},
    journal={Journal of Materials Science},
    year={2021},
    doi={10.1007/s10853-021-05816-2},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100139482&doi=10.1007%2fs10853-021-05816-2&partnerID=40&md5=c1f8c4dc267da2a84c6cc7dc8fa58df4},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] G. Liu, H. Mo, J. Wang, and Y. Shen, “Coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning mechanism for hexagonal metals,” Acta Materialia, vol. 202, pp. 399-416, 2021.
    [Bibtex]
    @ARTICLE{Liu2021399,
    author={Liu, G. and Mo, H. and Wang, J. and Shen, Y.},
    title={Coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning mechanism for hexagonal metals},
    journal={Acta Materialia},
    year={2021},
    volume={202},
    pages={399-416},
    doi={10.1016/j.actamat.2020.11.002},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095916514&doi=10.1016%2fj.actamat.2020.11.002&partnerID=40&md5=fe511b3c4ca2ede06c15f56164c35d6d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli, E. Tarleton, and A. C. F. Cocks, “Coupling a discrete twin model with cohesive elements to understand twin-induced fracture,” International Journal of Fracture, 2021.
    [Bibtex]
    @ARTICLE{Grilli2021,
    author={Grilli, N. and Tarleton, E. and Cocks, A.C.F.},
    title={Coupling a discrete twin model with cohesive elements to understand twin-induced fracture},
    journal={International Journal of Fracture},
    year={2021},
    doi={10.1007/s10704-020-00504-9},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100337996&doi=10.1007%2fs10704-020-00504-9&partnerID=40&md5=812e0e810129eb6be74dc25caa8dc21a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. Nguyen, M. Zhang, V. J. Amores, M. A. Sanz, and F. J. Montáns, “Computational modeling of dislocation slip mechanisms in crystal plasticity: A short review,” Crystals, vol. 11, iss. 1, pp. 1-29, 2021.
    [Bibtex]
    @ARTICLE{Nguyen20211,
    author={Nguyen, K. and Zhang, M. and Amores, V.J. and Sanz, M.A. and Montáns, F.J.},
    title={Computational modeling of dislocation slip mechanisms in crystal plasticity: A short review},
    journal={Crystals},
    year={2021},
    volume={11},
    number={1},
    pages={1-29},
    doi={10.3390/cryst11010042},
    art_number={42},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099460095&doi=10.3390%2fcryst11010042&partnerID=40&md5=cff0e4ae4d8a492cbdde47498b20a358},
    document_type={Article},
    source={Scopus},
    }

2020

  • [DOI] H. -W. Son and S. -K. Hyun, “Periodic formations of deformation twins and dislocation arrays via grain boundary sliding at serrated grain boundary in cold-shear-strained AZ31 alloy,” International Journal of Plasticity, vol. 135, 2020.
    [Bibtex]
    @ARTICLE{Son2020,
    author={Son, H.-W. and Hyun, S.-K.},
    title={Periodic formations of deformation twins and dislocation arrays via grain boundary sliding at serrated grain boundary in cold-shear-strained AZ31 alloy},
    journal={International Journal of Plasticity},
    year={2020},
    volume={135},
    doi={10.1016/j.ijplas.2020.102815},
    art_number={102815},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096166998&doi=10.1016%2fj.ijplas.2020.102815&partnerID=40&md5=bbf0142de8a7c3ae227fa5ccf48db421},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Akhondzadeh, R. B. Sills, N. Bertin, and W. Cai, “Dislocation density-based plasticity model from massive discrete dislocation dynamics database,” Journal of the Mechanics and Physics of Solids, vol. 145, 2020.
    [Bibtex]
    @ARTICLE{Akhondzadeh2020,
    author={Akhondzadeh, S. and Sills, R.B. and Bertin, N. and Cai, W.},
    title={Dislocation density-based plasticity model from massive discrete dislocation dynamics database},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={145},
    doi={10.1016/j.jmps.2020.104152},
    art_number={104152},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092116260&doi=10.1016%2fj.jmps.2020.104152&partnerID=40&md5=ff78205990927521efd2afd6e2308876},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Wu, S. K. Makineni, C. H. Liebscher, G. Dehm, J. Rezaei Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, and B. Gault, “Unveiling the Re effect in Ni-based single crystal superalloys,” Nature Communications, vol. 11, iss. 1, 2020.
    [Bibtex]
    @ARTICLE{Wu2020,
    author={Wu, X. and Makineni, S.K. and Liebscher, C.H. and Dehm, G. and Rezaei Mianroodi, J. and Shanthraj, P. and Svendsen, B. and Bürger, D. and Eggeler, G. and Raabe, D. and Gault, B.},
    title={Unveiling the Re effect in Ni-based single crystal superalloys},
    journal={Nature Communications},
    year={2020},
    volume={11},
    number={1},
    doi={10.1038/s41467-019-14062-9},
    art_number={389},
    note={cited By 18},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078277825&doi=10.1038%2fs41467-019-14062-9&partnerID=40&md5=8cc7f56c4ed07e7f6bec89f62f08a046},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Hirsiger, B. Berisha, H. Hippke, and P. Hora, “Crystal plasticity as complementary modelling technique for improved simulations results of anisotropic sheet metal behaviour in forming processes.” 2020.
    [Bibtex]
    @CONFERENCE{Hirsiger2020,
    author={Hirsiger, S. and Berisha, B. and Hippke, H. and Hora, P.},
    title={Crystal plasticity as complementary modelling technique for improved simulations results of anisotropic sheet metal behaviour in forming processes},
    journal={IOP Conference Series: Materials Science and Engineering},
    year={2020},
    volume={967},
    number={1},
    doi={10.1088/1757-899X/967/1/012067},
    art_number={012067},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097168561&doi=10.1088%2f1757-899X%2f967%2f1%2f012067&partnerID=40&md5=bb248b3c8f27456e7e71fff3f6073f2f},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] B. Böttger, M. Apel, M. Budnitzki, J. Eiken, G. Laschet, and B. Zhou, “Calphad coupled phase-field model with mechano-chemical contributions and its application to rafting of γ’ in CMSX-4,” Computational Materials Science, vol. 184, 2020.
    [Bibtex]
    @ARTICLE{Böttger2020,
    author={Böttger, B. and Apel, M. and Budnitzki, M. and Eiken, J. and Laschet, G. and Zhou, B.},
    title={Calphad coupled phase-field model with mechano-chemical contributions and its application to rafting of γ’ in CMSX-4},
    journal={Computational Materials Science},
    year={2020},
    volume={184},
    doi={10.1016/j.commatsci.2020.109909},
    art_number={109909},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087945467&doi=10.1016%2fj.commatsci.2020.109909&partnerID=40&md5=63018fab656828178210af71907f2213},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. S. Dodaran, J. Wang, N. Shamsaei, and S. Shao, “Investigating the interaction between persistent slip bands and surface hard coatings via crystal plasticity simulations,” Crystals, vol. 10, iss. 11, pp. 1-14, 2020.
    [Bibtex]
    @ARTICLE{Dodaran20201,
    author={Dodaran, M.S. and Wang, J. and Shamsaei, N. and Shao, S.},
    title={Investigating the interaction between persistent slip bands and surface hard coatings via crystal plasticity simulations},
    journal={Crystals},
    year={2020},
    volume={10},
    number={11},
    pages={1-14},
    doi={10.3390/cryst10111012},
    art_number={1012},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095995137&doi=10.3390%2fcryst10111012&partnerID=40&md5=15336401c2f301c9f5777319c2f90d73},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Hidalgo, M. Vittorietti, H. Farahani, F. Vercruysse, R. Petrov, and J. Sietsma, “Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel,” Acta Materialia, vol. 200, pp. 74-90, 2020.
    [Bibtex]
    @ARTICLE{Hidalgo202074,
    author={Hidalgo, J. and Vittorietti, M. and Farahani, H. and Vercruysse, F. and Petrov, R. and Sietsma, J.},
    title={Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel},
    journal={Acta Materialia},
    year={2020},
    volume={200},
    pages={74-90},
    doi={10.1016/j.actamat.2020.08.072},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090418729&doi=10.1016%2fj.actamat.2020.08.072&partnerID=40&md5=3f4fe6ac131f95e6cde074b0d978ff78},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, and D. Raabe, “An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves,” International Journal of Plasticity, vol. 134, 2020.
    [Bibtex]
    @ARTICLE{Sedighiani2020,
    author={Sedighiani, K. and Diehl, M. and Traka, K. and Roters, F. and Sietsma, J. and Raabe, D.},
    title={An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves},
    journal={International Journal of Plasticity},
    year={2020},
    volume={134},
    doi={10.1016/j.ijplas.2020.102779},
    art_number={102779},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090311812&doi=10.1016%2fj.ijplas.2020.102779&partnerID=40&md5=af0bbeaef672e15808953ffddc97f635},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H. -W. Yen, K. Sedighiani, P. Thoudden Sukumar, I. R. Souza Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C. H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S. -L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge, “Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 51, iss. 11, pp. 5517-5586, 2020.
    [Bibtex]
    @ARTICLE{Raabe20205517,
    author={Raabe, D. and Sun, B. and Kwiatkowski Da Silva, A. and Gault, B. and Yen, H.-W. and Sedighiani, K. and Thoudden Sukumar, P. and Souza Filho, I.R. and Katnagallu, S. and Jägle, E. and Kürnsteiner, P. and Kusampudi, N. and Stephenson, L. and Herbig, M. and Liebscher, C.H. and Springer, H. and Zaefferer, S. and Shah, V. and Wong, S.-L. and Baron, C. and Diehl, M. and Roters, F. and Ponge, D.},
    title={Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels},
    journal={Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science},
    year={2020},
    volume={51},
    number={11},
    pages={5517-5586},
    doi={10.1007/s11661-020-05947-2},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090308342&doi=10.1007%2fs11661-020-05947-2&partnerID=40&md5=81cbd6aad8da24db084683b642ea1dea},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Kasemer, G. Falkinger, and F. Roters, “A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet,” Modelling and Simulation in Materials Science and Engineering, vol. 28, iss. 8, 2020.
    [Bibtex]
    @ARTICLE{Kasemer2020,
    author={Kasemer, M. and Falkinger, G. and Roters, F.},
    title={A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2020},
    volume={28},
    number={8},
    doi={10.1088/1361-651X/abb8e2},
    art_number={085005},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85095745194&doi=10.1088%2f1361-651X%2fabb8e2&partnerID=40&md5=fbb4f57bb092045a6ed0a782c3d21681},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Zhu, C. Xiong, L. Ma, Q. Zhou, Y. Huang, B. Zhou, and J. Wang, “Coupled effect of scratching direction and speed on nano-scratching behavior of single crystalline copper,” Tribology International, vol. 150, 2020.
    [Bibtex]
    @ARTICLE{Zhu2020,
    author={Zhu, J. and Xiong, C. and Ma, L. and Zhou, Q. and Huang, Y. and Zhou, B. and Wang, J.},
    title={Coupled effect of scratching direction and speed on nano-scratching behavior of single crystalline copper},
    journal={Tribology International},
    year={2020},
    volume={150},
    doi={10.1016/j.triboint.2020.106385},
    art_number={106385},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083726930&doi=10.1016%2fj.triboint.2020.106385&partnerID=40&md5=57a556ee79100093b68591a1c1998015},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] B. Tirbonod, “Simulations of isothermal and thermomechanical fatigue of a polycrystal made out of austenitic stainless steels and relation to the Coffin-Manson law,” Theoretical and Applied Fracture Mechanics, vol. 109, 2020.
    [Bibtex]
    @ARTICLE{Tirbonod2020,
    author={Tirbonod, B.},
    title={Simulations of isothermal and thermomechanical fatigue of a polycrystal made out of austenitic stainless steels and relation to the Coffin-Manson law},
    journal={Theoretical and Applied Fracture Mechanics},
    year={2020},
    volume={109},
    doi={10.1016/j.tafmec.2020.102656},
    art_number={102656},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088033871&doi=10.1016%2fj.tafmec.2020.102656&partnerID=40&md5=058f6c97dfe16556dbe52c2ab3866200},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, A. A. Chaudhry, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl, “Effect of 3d representative volume element (Rve) thickness on stress and strain partitioning in crystal plasticity simulations of multi-phase materials,” Crystals, vol. 10, iss. 10, pp. 1-18, 2020.
    [Bibtex]
    @ARTICLE{Qayyum20201,
    author={Qayyum, F. and Chaudhry, A.A. and Guk, S. and Schmidtchen, M. and Kawalla, R. and Prahl, U.},
    title={Effect of 3d representative volume element (Rve) thickness on stress and strain partitioning in crystal plasticity simulations of multi-phase materials},
    journal={Crystals},
    year={2020},
    volume={10},
    number={10},
    pages={1-18},
    doi={10.3390/cryst10100944},
    art_number={944},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092740534&doi=10.3390%2fcryst10100944&partnerID=40&md5=c419f3836762807e1fab4e4694ffeb53},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Yamanaka, R. Kamijyo, K. Koenuma, I. Watanabe, and T. Kuwabara, “Deep neural network approach to estimate biaxial stress-strain curves of sheet metals,” Materials and Design, vol. 195, 2020.
    [Bibtex]
    @ARTICLE{Yamanaka2020,
    author={Yamanaka, A. and Kamijyo, R. and Koenuma, K. and Watanabe, I. and Kuwabara, T.},
    title={Deep neural network approach to estimate biaxial stress-strain curves of sheet metals},
    journal={Materials and Design},
    year={2020},
    volume={195},
    doi={10.1016/j.matdes.2020.108970},
    art_number={108970},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088626084&doi=10.1016%2fj.matdes.2020.108970&partnerID=40&md5=b5dabbe3bab312ea39878b0b65a52879},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Y. Geng, É. McCarthy, D. Brabazon, and N. Harrison, “Ti6Al4V functionally graded material via high power and high speed laser surface modification,” Surface and Coatings Technology, vol. 398, 2020.
    [Bibtex]
    @ARTICLE{Geng2020,
    author={Geng, Y. and McCarthy, É. and Brabazon, D. and Harrison, N.},
    title={Ti6Al4V functionally graded material via high power and high speed laser surface modification},
    journal={Surface and Coatings Technology},
    year={2020},
    volume={398},
    doi={10.1016/j.surfcoat.2020.126085},
    art_number={126085},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087279520&doi=10.1016%2fj.surfcoat.2020.126085&partnerID=40&md5=d61d11e04d5bd3c37c45ef26c4287044},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] T. Hama, “Crystal plasticity modeling for non-ferrous metals and its engineering applications,” ISIJ International, vol. 60, iss. 9, pp. 1849-1862, 2020.
    [Bibtex]
    @ARTICLE{Hama20201849,
    author={Hama, T.},
    title={Crystal plasticity modeling for non-ferrous metals and its engineering applications},
    journal={ISIJ International},
    year={2020},
    volume={60},
    number={9},
    pages={1849-1862},
    doi={10.2355/isijinternational.ISIJINT-2020-011},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092577246&doi=10.2355%2fisijinternational.ISIJINT-2020-011&partnerID=40&md5=e1bbd00a4ae74ac65a78ee97d031a00c},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] B. Cui, X. Liu, A. H. King, G. Ouyang, C. I. Nlebedim, and J. Cui, “Overcoming mechanical fragility in Sm-Co permanent magnet materials,” Acta Materialia, vol. 196, pp. 528-538, 2020.
    [Bibtex]
    @ARTICLE{Cui2020528,
    author={Cui, B. and Liu, X. and King, A.H. and Ouyang, G. and Nlebedim, C.I. and Cui, J.},
    title={Overcoming mechanical fragility in Sm-Co permanent magnet materials},
    journal={Acta Materialia},
    year={2020},
    volume={196},
    pages={528-538},
    doi={10.1016/j.actamat.2020.06.058},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087927093&doi=10.1016%2fj.actamat.2020.06.058&partnerID=40&md5=6cac18a85106d15dd794403f69e37312},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. Hippke, S. Hirsiger, B. Berisha, and P. Hora, “Optimized and validated prediction of plastic yielding supported by cruciform experiments and crystal plasticity,” International Journal of Material Forming, vol. 13, iss. 5, pp. 841-852, 2020.
    [Bibtex]
    @ARTICLE{Hippke2020841,
    author={Hippke, H. and Hirsiger, S. and Berisha, B. and Hora, P.},
    title={Optimized and validated prediction of plastic yielding supported by cruciform experiments and crystal plasticity},
    journal={International Journal of Material Forming},
    year={2020},
    volume={13},
    number={5},
    pages={841-852},
    doi={10.1007/s12289-020-01569-6},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086375579&doi=10.1007%2fs12289-020-01569-6&partnerID=40&md5=b118b1d2bfbbd0bd90de1e892759847d},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] M. Sudmanns, J. Bach, D. Weygand, and K. Schulz, “Data-driven exploration and continuum modeling of dislocation networks,” Modelling and Simulation in Materials Science and Engineering, vol. 28, iss. 6, 2020.
    [Bibtex]
    @ARTICLE{Sudmanns2020,
    author={Sudmanns, M. and Bach, J. and Weygand, D. and Schulz, K.},
    title={Data-driven exploration and continuum modeling of dislocation networks},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2020},
    volume={28},
    number={6},
    doi={10.1088/1361-651X/ab97ef},
    art_number={065001},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087200423&doi=10.1088%2f1361-651X%2fab97ef&partnerID=40&md5=14087d06c80ab8675ab92ad513a677f9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Galán-López and J. Hidalgo, “Use of the correlation between grain size and crystallographic orientation in crystal plasticity simulations: Application to AISI 420 stainless steel,” Crystals, vol. 10, iss. 9, pp. 1-20, 2020.
    [Bibtex]
    @ARTICLE{Galán-López20201,
    author={Galán-López, J. and Hidalgo, J.},
    title={Use of the correlation between grain size and crystallographic orientation in crystal plasticity simulations: Application to AISI 420 stainless steel},
    journal={Crystals},
    year={2020},
    volume={10},
    number={9},
    pages={1-20},
    doi={10.3390/cryst10090819},
    art_number={819},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090897797&doi=10.3390%2fcryst10090819&partnerID=40&md5=edcab3486d3cff0a7f213af0b2e44916},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] T. Fischer, S. Ulan kyzy, O. Munz, and E. Werner, “Microstructure-based modelling of rubbing in polycrystalline honeycomb structures,” Continuum Mechanics and Thermodynamics, vol. 32, iss. 5, pp. 1371-1383, 2020.
    [Bibtex]
    @ARTICLE{Fischer20201371,
    author={Fischer, T. and Ulan kyzy, S. and Munz, O. and Werner, E.},
    title={Microstructure-based modelling of rubbing in polycrystalline honeycomb structures},
    journal={Continuum Mechanics and Thermodynamics},
    year={2020},
    volume={32},
    number={5},
    pages={1371-1383},
    doi={10.1007/s00161-019-00852-5},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075374021&doi=10.1007%2fs00161-019-00852-5&partnerID=40&md5=66ca993ac663d1fb00e44bb6cbf628fa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, and X. Zhang, “Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations,” Journal of the Mechanics and Physics of Solids, vol. 142, 2020.
    [Bibtex]
    @ARTICLE{Lu2020,
    author={Lu, X. and Zhao, J. and Yu, C. and Li, Z. and Kan, Q. and Kang, G. and Zhang, X.},
    title={Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={142},
    doi={10.1016/j.jmps.2020.103971},
    art_number={103971},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085733185&doi=10.1016%2fj.jmps.2020.103971&partnerID=40&md5=440fae5c14bc05176b05a3f7c48f52a1},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. D. Robson, O. Engler, C. Sigli, A. Deschamps, and W. J. Poole, “Advances in Microstructural Understanding of Wrought Aluminum Alloys,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 51, iss. 9, pp. 4377-4389, 2020.
    [Bibtex]
    @ARTICLE{Robson20204377,
    author={Robson, J.D. and Engler, O. and Sigli, C. and Deschamps, A. and Poole, W.J.},
    title={Advances in Microstructural Understanding of Wrought Aluminum Alloys},
    journal={Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science},
    year={2020},
    volume={51},
    number={9},
    pages={4377-4389},
    doi={10.1007/s11661-020-05908-9},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087731644&doi=10.1007%2fs11661-020-05908-9&partnerID=40&md5=1305af6c94a0ab1ed5f3f0e1bd0fa3f0},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Е. Emelianova, V. Romanova, O. Zinovieva, and R. Balokhonov, “The effects of surface-layer grain size and texture on deformation-induced surface roughening in polycrystalline titanium hardened by ultrasonic impact treatment,” Materials Science and Engineering A, vol. 793, 2020.
    [Bibtex]
    @ARTICLE{Emelianova2020,
    author={Emelianova, Е. and Romanova, V. and Zinovieva, O. and Balokhonov, R.},
    title={The effects of surface-layer grain size and texture on deformation-induced surface roughening in polycrystalline titanium hardened by ultrasonic impact treatment},
    journal={Materials Science and Engineering A},
    year={2020},
    volume={793},
    doi={10.1016/j.msea.2020.139896},
    art_number={139896},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087697446&doi=10.1016%2fj.msea.2020.139896&partnerID=40&md5=c8fa4aace90550aa713b05f8a1938cf7},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Harte, M. Atkinson, M. Preuss, and J. Quinta da Fonseca, “A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy,” Acta Materialia, vol. 195, pp. 555-570, 2020.
    [Bibtex]
    @ARTICLE{Harte2020555,
    author={Harte, A. and Atkinson, M. and Preuss, M. and Quinta da Fonseca, J.},
    title={A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy},
    journal={Acta Materialia},
    year={2020},
    volume={195},
    pages={555-570},
    doi={10.1016/j.actamat.2020.05.029},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086500144&doi=10.1016%2fj.actamat.2020.05.029&partnerID=40&md5=7b50f76804ec7b6440aef6a3dec32b0d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] T. Hochrainer and B. Weger, “Is crystal plasticity non-conservative? Lessons from large deformation continuum dislocation theory,” Journal of the Mechanics and Physics of Solids, vol. 141, 2020.
    [Bibtex]
    @ARTICLE{Hochrainer2020,
    author={Hochrainer, T. and Weger, B.},
    title={Is crystal plasticity non-conservative? Lessons from large deformation continuum dislocation theory},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={141},
    doi={10.1016/j.jmps.2020.103957},
    art_number={103957},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085249037&doi=10.1016%2fj.jmps.2020.103957&partnerID=40&md5=c4536c31ac52a471987ab3c2ffff2136},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] D. Horny, J. Schukraft, K. A. Weidenmann, and K. Schulz, “Numerical and Experimental Characterization of Elastic Properties of a Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite,” Advanced Engineering Materials, vol. 22, iss. 7, 2020.
    [Bibtex]
    @ARTICLE{Horny2020,
    author={Horny, D. and Schukraft, J. and Weidenmann, K.A. and Schulz, K.},
    title={Numerical and Experimental Characterization of Elastic Properties of a Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite},
    journal={Advanced Engineering Materials},
    year={2020},
    volume={22},
    number={7},
    doi={10.1002/adem.201901556},
    art_number={1901556},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085075350&doi=10.1002%2fadem.201901556&partnerID=40&md5=2297eaad9f4a1efad400d21ec5b3e41c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Papanikolaou, “Microstructural inelastic fingerprints and data-rich predictions of plasticity and damage in solids,” Computational Mechanics, vol. 66, iss. 1, pp. 141-154, 2020.
    [Bibtex]
    @ARTICLE{Papanikolaou2020141,
    author={Papanikolaou, S.},
    title={Microstructural inelastic fingerprints and data-rich predictions of plasticity and damage in solids},
    journal={Computational Mechanics},
    year={2020},
    volume={66},
    number={1},
    pages={141-154},
    doi={10.1007/s00466-020-01845-x},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084044780&doi=10.1007%2fs00466-020-01845-x&partnerID=40&md5=cd50027051372146eec0ef263e101d02},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Kühbach and F. Roters, “Quantification of 3D spatial correlations between state variables and distances to the grain boundary network in full-field crystal plasticity spectral method simulations,” Modelling and Simulation in Materials Science and Engineering, vol. 28, iss. 5, 2020.
    [Bibtex]
    @ARTICLE{Kühbach2020,
    author={Kühbach, M. and Roters, F.},
    title={Quantification of 3D spatial correlations between state variables and distances to the grain boundary network in full-field crystal plasticity spectral method simulations},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2020},
    volume={28},
    number={5},
    doi={10.1088/1361-651X/ab7f8c},
    art_number={055005},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086078292&doi=10.1088%2f1361-651X%2fab7f8c&partnerID=40&md5=7c2c3dad189de48357fdb115cf335caa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Lu, J. Zhao, Z. Wang, B. Gan, J. Zhao, G. Kang, and X. Zhang, “Crystal plasticity finite element analysis of gradient nanostructured TWIP steel,” International Journal of Plasticity, vol. 130, 2020.
    [Bibtex]
    @ARTICLE{Lu2020,
    author={Lu, X. and Zhao, J. and Wang, Z. and Gan, B. and Zhao, J. and Kang, G. and Zhang, X.},
    title={Crystal plasticity finite element analysis of gradient nanostructured TWIP steel},
    journal={International Journal of Plasticity},
    year={2020},
    volume={130},
    doi={10.1016/j.ijplas.2020.102703},
    art_number={102703},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081538182&doi=10.1016%2fj.ijplas.2020.102703&partnerID=40&md5=6394c5a6f478adaac9715b99f5a29a59},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Q. Li, H. Zhang, F. Chen, D. Xu, D. Sui, and Z. Cui, “Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling,” International Journal of Mechanical Sciences, vol. 176, 2020.
    [Bibtex]
    @ARTICLE{Li2020,
    author={Li, Q. and Zhang, H. and Chen, F. and Xu, D. and Sui, D. and Cui, Z.},
    title={Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling},
    journal={International Journal of Mechanical Sciences},
    year={2020},
    volume={176},
    doi={10.1016/j.ijmecsci.2020.105569},
    art_number={105569},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081132344&doi=10.1016%2fj.ijmecsci.2020.105569&partnerID=40&md5=70b6da74c3124f506d68c5d6a506a00e},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] P. Shanthraj, C. Liu, A. Akbarian, B. Svendsen, and D. Raabe, “Multi-component chemo-mechanics based on transport relations for the chemical potential,” Computer Methods in Applied Mechanics and Engineering, vol. 365, 2020.
    [Bibtex]
    @ARTICLE{Shanthraj2020,
    author={Shanthraj, P. and Liu, C. and Akbarian, A. and Svendsen, B. and Raabe, D.},
    title={Multi-component chemo-mechanics based on transport relations for the chemical potential},
    journal={Computer Methods in Applied Mechanics and Engineering},
    year={2020},
    volume={365},
    doi={10.1016/j.cma.2020.113029},
    art_number={113029},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082944892&doi=10.1016%2fj.cma.2020.113029&partnerID=40&md5=74388730f52ba87e4d33cb1ffe505d6a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Chandra, M. K. Samal, R. Kapoor, and V. M. Chavan, “Simulation of bicrystal deformation including grain boundary effects: Atomistic computations and crystal plasticity finite element analysis,” Computational Materials Science, vol. 179, 2020.
    [Bibtex]
    @ARTICLE{Chandra2020,
    author={Chandra, S. and Samal, M.K. and Kapoor, R. and Chavan, V.M.},
    title={Simulation of bicrystal deformation including grain boundary effects: Atomistic computations and crystal plasticity finite element analysis},
    journal={Computational Materials Science},
    year={2020},
    volume={179},
    doi={10.1016/j.commatsci.2020.109641},
    art_number={109641},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081159719&doi=10.1016%2fj.commatsci.2020.109641&partnerID=40&md5=924bd7ec01f133cc0d93495050c8883b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] P. Lin and A. El-Azab, “Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics,” Modelling and Simulation in Materials Science and Engineering, vol. 28, iss. 4, 2020.
    [Bibtex]
    @ARTICLE{Lin2020,
    author={Lin, P. and El-Azab, A.},
    title={Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2020},
    volume={28},
    number={4},
    doi={10.1088/1361-651X/ab7d90},
    art_number={045003},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084410363&doi=10.1088%2f1361-651X%2fab7d90&partnerID=40&md5=1064cc987052bd345cddd665e95f6ada},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] W. Liu, B. K. Chen, Y. Pang, and A. Najafzadeh, “A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy,” International Journal of Solids and Structures, vol. 193-194, pp. 117-133, 2020.
    [Bibtex]
    @ARTICLE{Liu2020117,
    author={Liu, W. and Chen, B.K. and Pang, Y. and Najafzadeh, A.},
    title={A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy},
    journal={International Journal of Solids and Structures},
    year={2020},
    volume={193-194},
    pages={117-133},
    doi={10.1016/j.ijsolstr.2020.02.008},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079633887&doi=10.1016%2fj.ijsolstr.2020.02.008&partnerID=40&md5=2cbb054a80b378ffc71e2596fc13e39d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. -M. Zhang, S. Xu, Q. Li, J. -R. Liu, X. -Q. Shang, X. -H. Dong, and Z. -S. Cui, “Progress of crystal plasticity theory and simulations [晶体塑性理论及模拟研究进展],” Suxing Gongcheng Xuebao/Journal of Plasticity Engineering, vol. 27, iss. 5, pp. 12-32, 2020.
    [Bibtex]
    @ARTICLE{Zhang202012,
    author={Zhang, H.-M. and Xu, S. and Li, Q. and Liu, J.-R. and Shang, X.-Q. and Dong, X.-H. and Cui, Z.-S.},
    title={Progress of crystal plasticity theory and simulations [晶体塑性理论及模拟研究进展]},
    journal={Suxing Gongcheng Xuebao/Journal of Plasticity Engineering},
    year={2020},
    volume={27},
    number={5},
    pages={12-32},
    doi={10.3969/j.issn.1007-2012.2020.05.003},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086093747&doi=10.3969%2fj.issn.1007-2012.2020.05.003&partnerID=40&md5=390ef9d994db3dbb96f568b9e7f184cb},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] Z. Yang, W. Xu, H. Wu, X. Wan, Y. Chen, D. Shan, and B. Guo, “Enhancing hoop strength of titanium alloy tube by cross spinning,” International Journal of Machine Tools and Manufacture, vol. 152, 2020.
    [Bibtex]
    @ARTICLE{Yang2020,
    author={Yang, Z. and Xu, W. and Wu, H. and Wan, X. and Chen, Y. and Shan, D. and Guo, B.},
    title={Enhancing hoop strength of titanium alloy tube by cross spinning},
    journal={International Journal of Machine Tools and Manufacture},
    year={2020},
    volume={152},
    doi={10.1016/j.ijmachtools.2020.103530},
    art_number={103530},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079873929&doi=10.1016%2fj.ijmachtools.2020.103530&partnerID=40&md5=7bedf5e00243fa8edf3da2a27b70db11},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, S. Guk, S. Prüger, M. Schmidtchen, I. Saenko, B. Kiefer, R. Kawalla, and U. Prahl, “Investigating the local deformation and transformation behavior of sintered X3CrMnNi16-7-6 TRIP steel using a calibrated crystal plasticity-based numerical simulation model,” International Journal of Materials Research, vol. 111, iss. 5, pp. 392-404, 2020.
    [Bibtex]
    @ARTICLE{Qayyum2020392,
    author={Qayyum, F. and Guk, S. and Prüger, S. and Schmidtchen, M. and Saenko, I. and Kiefer, B. and Kawalla, R. and Prahl, U.},
    title={Investigating the local deformation and transformation behavior of sintered X3CrMnNi16-7-6 TRIP steel using a calibrated crystal plasticity-based numerical simulation model},
    journal={International Journal of Materials Research},
    year={2020},
    volume={111},
    number={5},
    pages={392-404},
    doi={10.3139/146.111900},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082619329&doi=10.3139%2f146.111900&partnerID=40&md5=fa7e937bc606f815f9a512d7e6670f91},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Wicht, M. Schneider, and T. Böhlke, “On Quasi-Newton methods in fast Fourier transform-based micromechanics,” International Journal for Numerical Methods in Engineering, vol. 121, iss. 8, pp. 1665-1694, 2020.
    [Bibtex]
    @ARTICLE{Wicht20201665,
    author={Wicht, D. and Schneider, M. and Böhlke, T.},
    title={On Quasi-Newton methods in fast Fourier transform-based micromechanics},
    journal={International Journal for Numerical Methods in Engineering},
    year={2020},
    volume={121},
    number={8},
    pages={1665-1694},
    doi={10.1002/nme.6283},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076921934&doi=10.1002%2fnme.6283&partnerID=40&md5=8bd071a6f4a222736ce83deb3c8040c3},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] R. Ma and W. Sun, “FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials,” Computer Methods in Applied Mechanics and Engineering, vol. 362, 2020.
    [Bibtex]
    @ARTICLE{Ma2020,
    author={Ma, R. and Sun, W.},
    title={FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials},
    journal={Computer Methods in Applied Mechanics and Engineering},
    year={2020},
    volume={362},
    doi={10.1016/j.cma.2019.112781},
    art_number={112781},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078571855&doi=10.1016%2fj.cma.2019.112781&partnerID=40&md5=712cb7a9c8d597d2d4f694b697362532},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] L. Sharma, R. H. J. Peerlings, P. Shanthraj, F. Roters, and M. G. D. Geers, “An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach,” Computational Mechanics, vol. 65, iss. 4, pp. 925-939, 2020.
    [Bibtex]
    @ARTICLE{Sharma2020925,
    author={Sharma, L. and Peerlings, R.H.J. and Shanthraj, P. and Roters, F. and Geers, M.G.D.},
    title={An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach},
    journal={Computational Mechanics},
    year={2020},
    volume={65},
    number={4},
    pages={925-939},
    doi={10.1007/s00466-019-01801-4},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076725897&doi=10.1007%2fs00466-019-01801-4&partnerID=40&md5=410dba4d6cb9e300bd32ea731b432476},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli, E. Tarleton, P. D. Edmondson, M. N. Gussev, and A. C. F. Cocks, “In situ measurement and modelling of the growth and length scale of twins in α -uranium,” Physical Review Materials, vol. 4, iss. 4, 2020.
    [Bibtex]
    @ARTICLE{Grilli2020,
    author={Grilli, N. and Tarleton, E. and Edmondson, P.D. and Gussev, M.N. and Cocks, A.C.F.},
    title={In situ measurement and modelling of the growth and length scale of twins in α -uranium},
    journal={Physical Review Materials},
    year={2020},
    volume={4},
    number={4},
    doi={10.1103/PhysRevMaterials.4.043605},
    art_number={043605},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084673251&doi=10.1103%2fPhysRevMaterials.4.043605&partnerID=40&md5=4a019425a2d1f6e2b002eec48fd79c20},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Y. Pang, B. K. Chen, W. Liu, S. F. Yu, and S. N. Lingamanaik, “Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes,” NDT and E International, vol. 111, 2020.
    [Bibtex]
    @ARTICLE{Pang2020,
    author={Pang, Y. and Chen, B.K. and Liu, W. and Yu, S.F. and Lingamanaik, S.N.},
    title={Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes},
    journal={NDT and E International},
    year={2020},
    volume={111},
    doi={10.1016/j.ndteint.2020.102219},
    art_number={102219},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077951691&doi=10.1016%2fj.ndteint.2020.102219&partnerID=40&md5=711ae003a578b4c6a34cf0d9ddbcc502},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. P. Donegan and M. A. Groeber, Data structures andworkflows for ICME, , 2020.
    [Bibtex]
    @BOOK{Donegan202019,
    author={Donegan, S.P. and Groeber, M.A.},
    title={Data structures andworkflows for ICME},
    journal={Integrated Computational Materials Engineering (ICME): Advancing Computational and Experimental Methods},
    year={2020},
    pages={19-53},
    doi={10.1007/978-3-030-40562-5_2},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089168928&doi=10.1007%2f978-3-030-40562-5_2&partnerID=40&md5=f333d7d3dca2be1afcd4e44b5af6cc19},
    document_type={Book Chapter},
    source={Scopus},
    }
  • [DOI] F. Han, M. Diehl, F. Roters, and D. Raabe, “Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations,” Journal of Materials Processing Technology, vol. 277, 2020.
    [Bibtex]
    @ARTICLE{Han2020,
    author={Han, F. and Diehl, M. and Roters, F. and Raabe, D.},
    title={Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations},
    journal={Journal of Materials Processing Technology},
    year={2020},
    volume={277},
    doi={10.1016/j.jmatprotec.2019.116449},
    art_number={116449},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073215271&doi=10.1016%2fj.jmatprotec.2019.116449&partnerID=40&md5=124eb1d81bde2a89e13473717718e716},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Zhang and S. Ding, “Mesoscale simulation research on the homogenized elasto-plastic behavior of FeCrAl alloys,” Materials Today Communications, vol. 22, 2020.
    [Bibtex]
    @ARTICLE{Zhang2020,
    author={Zhang, J. and Ding, S.},
    title={Mesoscale simulation research on the homogenized elasto-plastic behavior of FeCrAl alloys},
    journal={Materials Today Communications},
    year={2020},
    volume={22},
    doi={10.1016/j.mtcomm.2019.100718},
    art_number={100718},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077142272&doi=10.1016%2fj.mtcomm.2019.100718&partnerID=40&md5=504a9e6956149d6ac13e0296e1e07448},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] W. Liu, J. Lian, N. Aravas, and S. Münstermann, “A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel,” International Journal of Plasticity, vol. 126, 2020.
    [Bibtex]
    @ARTICLE{Liu2020,
    author={Liu, W. and Lian, J. and Aravas, N. and Münstermann, S.},
    title={A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel},
    journal={International Journal of Plasticity},
    year={2020},
    volume={126},
    doi={10.1016/j.ijplas.2019.10.002},
    art_number={102614},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070932179&doi=10.1016%2fj.ijplas.2019.10.002&partnerID=40&md5=491a2b9b73196587a805ab88d9e9c841},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. A. H. Motaman, F. Kies, P. Köhnen, M. Létang, M. Lin, A. Molotnikov, and C. Haase, “Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach,” JOM, vol. 72, iss. 3, pp. 1092-1104, 2020.
    [Bibtex]
    @ARTICLE{Motaman20201092,
    author={Motaman, S.A.H. and Kies, F. and Köhnen, P. and Létang, M. and Lin, M. and Molotnikov, A. and Haase, C.},
    title={Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach},
    journal={JOM},
    year={2020},
    volume={72},
    number={3},
    pages={1092-1104},
    doi={10.1007/s11837-020-04028-4},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078790860&doi=10.1007%2fs11837-020-04028-4&partnerID=40&md5=639392292a8ab79cd3b21b042755d644},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Diehl, D. Wang, C. Liu, J. Rezaei Mianroodi, F. Han, D. Ma, P. J. J. Kok, F. Roters, and P. Shanthraj, “Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures Using DAMASK—The Düsseldorf Advanced Material Simulation Kit,” Advanced Engineering Materials, vol. 22, iss. 3, 2020.
    [Bibtex]
    @ARTICLE{Diehl2020,
    author={Diehl, M. and Wang, D. and Liu, C. and Rezaei Mianroodi, J. and Han, F. and Ma, D. and Kok, P.J.J. and Roters, F. and Shanthraj, P.},
    title={Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures Using DAMASK—The Düsseldorf Advanced Material Simulation Kit},
    journal={Advanced Engineering Materials},
    year={2020},
    volume={22},
    number={3},
    doi={10.1002/adem.201901044},
    art_number={1901044},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079365278&doi=10.1002%2fadem.201901044&partnerID=40&md5=c1b3df8e2a7c8ef60dac2474849d8a5b},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] V. Gaur, F. Briffod, and M. Enoki, “Micro-mechanical investigation of fatigue behavior of Al alloys containing surface/superficial defects,” Materials Science and Engineering A, vol. 775, 2020.
    [Bibtex]
    @ARTICLE{Gaur2020,
    author={Gaur, V. and Briffod, F. and Enoki, M.},
    title={Micro-mechanical investigation of fatigue behavior of Al alloys containing surface/superficial defects},
    journal={Materials Science and Engineering A},
    year={2020},
    volume={775},
    doi={10.1016/j.msea.2020.138958},
    art_number={138958},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078088759&doi=10.1016%2fj.msea.2020.138958&partnerID=40&md5=1063ede95ef23a54bd21a51ef49566fa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. A. H. Motaman, F. Roters, and C. Haase, “Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials,” Acta Materialia, vol. 185, pp. 340-369, 2020.
    [Bibtex]
    @ARTICLE{Motaman2020340,
    author={Motaman, S.A.H. and Roters, F. and Haase, C.},
    title={Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials},
    journal={Acta Materialia},
    year={2020},
    volume={185},
    pages={340-369},
    doi={10.1016/j.actamat.2019.12.003},
    note={cited By 10},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076705390&doi=10.1016%2fj.actamat.2019.12.003&partnerID=40&md5=ad1579b5df855118a972386be27d16e8},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Chakraborty, C. Zhang, S. Balachandran, T. R. Bieler, and P. Eisenlohr, “Assessment of surface and bulk-dominated methodologies to measure critical resolved shear stresses in hexagonal materials,” Acta Materialia, vol. 184, pp. 241-253, 2020.
    [Bibtex]
    @ARTICLE{Chakraborty2020241,
    author={Chakraborty, A. and Zhang, C. and Balachandran, S. and Bieler, T.R. and Eisenlohr, P.},
    title={Assessment of surface and bulk-dominated methodologies to measure critical resolved shear stresses in hexagonal materials},
    journal={Acta Materialia},
    year={2020},
    volume={184},
    pages={241-253},
    doi={10.1016/j.actamat.2019.11.023},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075895133&doi=10.1016%2fj.actamat.2019.11.023&partnerID=40&md5=d7bf1d97f331eca70010272e5ed7d8c1},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli, P. Earp, A. C. F. Cocks, J. Marrow, and E. Tarleton, “Characterisation of slip and twin activity using digital image correlation and crystal plasticity finite element simulation: Application to orthorhombic α-uranium,” Journal of the Mechanics and Physics of Solids, vol. 135, 2020.
    [Bibtex]
    @ARTICLE{Grilli2020,
    author={Grilli, N. and Earp, P. and Cocks, A.C.F. and Marrow, J. and Tarleton, E.},
    title={Characterisation of slip and twin activity using digital image correlation and crystal plasticity finite element simulation: Application to orthorhombic α-uranium},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={135},
    doi={10.1016/j.jmps.2019.103800},
    art_number={103800},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075578189&doi=10.1016%2fj.jmps.2019.103800&partnerID=40&md5=520463d9443acd12b6131baed87c3e73},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Han, F. Roters, and D. Raabe, “Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver,” International Journal of Plasticity, vol. 125, pp. 97-117, 2020.
    [Bibtex]
    @ARTICLE{Han202097,
    author={Han, F. and Roters, F. and Raabe, D.},
    title={Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver},
    journal={International Journal of Plasticity},
    year={2020},
    volume={125},
    pages={97-117},
    doi={10.1016/j.ijplas.2019.09.004},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072772004&doi=10.1016%2fj.ijplas.2019.09.004&partnerID=40&md5=04f1380a1c913ec5f280441f58db40e3},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Q. -N. Han, S. -S. Rui, W. Qiu, Y. Su, X. Ma, Z. Su, H. Cui, and H. Shi, “Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy,” Materials Science and Engineering A, vol. 773, 2020.
    [Bibtex]
    @ARTICLE{Han2020,
    author={Han, Q.-N. and Rui, S.-S. and Qiu, W. and Su, Y. and Ma, X. and Su, Z. and Cui, H. and Shi, H.},
    title={Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy},
    journal={Materials Science and Engineering A},
    year={2020},
    volume={773},
    doi={10.1016/j.msea.2019.138893},
    art_number={138893},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077361143&doi=10.1016%2fj.msea.2019.138893&partnerID=40&md5=9e750805598c97c1277b3a568f63e5b4},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. G. Isaenkova, Y. A. Perlovich, O. A. Krymskaya, and D. I. Zhuk, “Accounting for twinning when modelling plastic deformation of-zirconium,” Tsvetnye Metally, vol. 2020, iss. 3, pp. 86-91, 2020.
    [Bibtex]
    @ARTICLE{Isaenkova202086,
    author={Isaenkova, M.G. and Perlovich, Y.A. and Krymskaya, O.A. and Zhuk, D.I.},
    title={Accounting for twinning when modelling plastic deformation of-zirconium},
    journal={Tsvetnye Metally},
    year={2020},
    volume={2020},
    number={3},
    pages={86-91},
    doi={10.17580/tsm.2020.03.13},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085190886&doi=10.17580%2ftsm.2020.03.13&partnerID=40&md5=e0a0527d808fdfac3f4c4080fbdc9bc4},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] W. Liu and J. Lian, “Microstructure effects on the plastic anisotropy of a fine-structured dual-phase steel.” 2020, pp. 1552-1560.
    [Bibtex]
    @CONFERENCE{Liu20201552,
    author={Liu, W. and Lian, J.},
    title={Microstructure effects on the plastic anisotropy of a fine-structured dual-phase steel},
    journal={Procedia Manufacturing},
    year={2020},
    volume={47},
    pages={1552-1560},
    doi={10.1016/j.promfg.2020.04.349},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085498166&doi=10.1016%2fj.promfg.2020.04.349&partnerID=40&md5=b1d9e53f24021b14baace46e4d52c0a0},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] L. Singh, S. Vohra, and M. Sharma, “A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling,” Lecture Notes in Mechanical Engineering, pp. 61-69, 2020.
    [Bibtex]
    @ARTICLE{Singh202061,
    author={Singh, L. and Vohra, S. and Sharma, M.},
    title={A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling},
    journal={Lecture Notes in Mechanical Engineering},
    year={2020},
    pages={61-69},
    doi={10.1007/978-981-15-4059-2_5},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086147930&doi=10.1007%2f978-981-15-4059-2_5&partnerID=40&md5=bbcb09f29d95330004a5ba0671aeb17e},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] C. Jia, G. Shen, W. Chen, B. Hu, C. Zheng, and D. Li, “Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach,” Acta Metallurgica Sinica (English Letters), 2020.
    [Bibtex]
    @ARTICLE{Jia2020,
    author={Jia, C. and Shen, G. and Chen, W. and Hu, B. and Zheng, C. and Li, D.},
    title={Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach},
    journal={Acta Metallurgica Sinica (English Letters)},
    year={2020},
    doi={10.1007/s40195-020-01155-4},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094672869&doi=10.1007%2fs40195-020-01155-4&partnerID=40&md5=b7376fa49b91b2fda80ff6fc6afc6da8},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Sonawane and P. Kumar, “Role of Grain Boundary Sliding in Structural Integrity of Cu-Filled Through Si Via During Isothermal Annealing,” Journal of Electronic Materials, 2020.
    [Bibtex]
    @ARTICLE{Sonawane2020,
    author={Sonawane, D. and Kumar, P.},
    title={Role of Grain Boundary Sliding in Structural Integrity of Cu-Filled Through Si Via During Isothermal Annealing},
    journal={Journal of Electronic Materials},
    year={2020},
    doi={10.1007/s11664-020-08476-1},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090294272&doi=10.1007%2fs11664-020-08476-1&partnerID=40&md5=6e0fb2247cb44625199ea3b231f0dd23},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Umar, F. Qayyum, M. U. Farooq, L. A. Khan, S. Guk, and U. Prahl, “Investigating the Effect of Cementite Particle Size and Distribution on Local Stress and Strain Evolution in Spheroidized Medium Carbon Steels using Crystal Plasticity-Based Numerical Simulations,” Steel Research International, 2020.
    [Bibtex]
    @ARTICLE{Umar2020,
    author={Umar, M. and Qayyum, F. and Farooq, M.U. and Khan, L.A. and Guk, S. and Prahl, U.},
    title={Investigating the Effect of Cementite Particle Size and Distribution on Local Stress and Strain Evolution in Spheroidized Medium Carbon Steels using Crystal Plasticity-Based Numerical Simulations},
    journal={Steel Research International},
    year={2020},
    doi={10.1002/srin.202000407},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096742468&doi=10.1002%2fsrin.202000407&partnerID=40&md5=9e4650864c5193a4e7103c76f25d98a0},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Haouala, S. Lucarini, J. LLorca, and J. Segurado, “Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization,” Journal of the Mechanics and Physics of Solids, vol. 134, 2020.
    [Bibtex]
    @ARTICLE{Haouala2020,
    author={Haouala, S. and Lucarini, S. and LLorca, J. and Segurado, J.},
    title={Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={134},
    doi={10.1016/j.jmps.2019.103755},
    art_number={103755},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073526474&doi=10.1016%2fj.jmps.2019.103755&partnerID=40&md5=34c2914d2dd0337ccabc0a15530ebc03},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Prüger and B. Kiefer, “Towards the Crystal Plasticity Based Modeling of TRIP-Steels—From Material Point to Structural Simulations,” Springer Series in Materials Science, vol. 298, pp. 793-823, 2020.
    [Bibtex]
    @ARTICLE{Prüger2020793,
    author={Prüger, S. and Kiefer, B.},
    title={Towards the Crystal Plasticity Based Modeling of TRIP-Steels—From Material Point to Structural Simulations},
    journal={Springer Series in Materials Science},
    year={2020},
    volume={298},
    pages={793-823},
    doi={10.1007/978-3-030-42603-3_24},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086125745&doi=10.1007%2f978-3-030-42603-3_24&partnerID=40&md5=60d9c02fcdbd6767e04296f3b4292176},
    document_type={Book Chapter},
    source={Scopus},
    }
  • [DOI] Y. Kawano, M. Sato, T. Mayama, M. Mitsuhara, and S. Yamasaki, “Quantitative evaluation of slip activity in polycrystalline α-titanium considering non-local interactions between crystal grains,” International Journal of Plasticity, vol. 127, 2020.
    [Bibtex]
    @ARTICLE{Kawano2020,
    author={Kawano, Y. and Sato, M. and Mayama, T. and Mitsuhara, M. and Yamasaki, S.},
    title={Quantitative evaluation of slip activity in polycrystalline α-titanium considering non-local interactions between crystal grains},
    journal={International Journal of Plasticity},
    year={2020},
    volume={127},
    doi={10.1016/j.ijplas.2019.12.001},
    art_number={102638},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077221535&doi=10.1016%2fj.ijplas.2019.12.001&partnerID=40&md5=14a13a03597d9809606f857d433710d2},
    document_type={Article},
    source={Scopus},
    }

2019

  • [DOI] A. Beniwal, R. Dadhich, and A. Alankar, “Deep learning based predictive modeling for structure-property linkages,” Materialia, vol. 8, 2019.
    [Bibtex]
    @ARTICLE{Beniwal2019,
    author={Beniwal, A. and Dadhich, R. and Alankar, A.},
    title={Deep learning based predictive modeling for structure-property linkages},
    journal={Materialia},
    year={2019},
    volume={8},
    doi={10.1016/j.mtla.2019.100435},
    art_number={100435},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070864118&doi=10.1016%2fj.mtla.2019.100435&partnerID=40&md5=4904927fd2fa6785695e3e1723a4aa15},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Diehl, J. Niehuesbernd, and E. Bruder, “Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel,” Metals, vol. 9, iss. 12, 2019.
    [Bibtex]
    @ARTICLE{Diehl2019,
    author={Diehl, M. and Niehuesbernd, J. and Bruder, E.},
    title={Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel},
    journal={Metals},
    year={2019},
    volume={9},
    number={12},
    doi={10.3390/met9121252},
    art_number={1252},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075416708&doi=10.3390%2fmet9121252&partnerID=40&md5=5ebe6acc1928505eb447f1e3fa08283b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Z. Luo, L. Zhao, W. Tian, D. Yang, Y. Chen, J. Yu, and J. Li, “Data link modeling and simulation based on DEVS.” 2019, pp. 35-40.
    [Bibtex]
    @CONFERENCE{Luo201935,
    author={Luo, Z. and Zhao, L. and Tian, W. and Yang, D. and Chen, Y. and Yu, J. and Li, J.},
    title={Data link modeling and simulation based on DEVS},
    journal={ACM International Conference Proceeding Series},
    year={2019},
    pages={35-40},
    doi={10.1145/3372806.3374911},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079103596&doi=10.1145%2f3372806.3374911&partnerID=40&md5=fd40653a3c0288587bac68f6eeb48dd4},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] P. J. J. Kok, W. Spanjer, F. Korver, Y. An, and M. Aarnts, “Crystal plasticity based predictions of mechanical properties from heterogeneous steel microstructures.” 2019.
    [Bibtex]
    @CONFERENCE{Kok2019,
    author={Kok, P.J.J. and Spanjer, W. and Korver, F. and An, Y. and Aarnts, M.},
    title={Crystal plasticity based predictions of mechanical properties from heterogeneous steel microstructures},
    journal={IOP Conference Series: Materials Science and Engineering},
    year={2019},
    volume={651},
    number={1},
    doi={10.1088/1757-899X/651/1/012032},
    art_number={012032},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078267434&doi=10.1088%2f1757-899X%2f651%2f1%2f012032&partnerID=40&md5=a268b58ae83cc0b98f3d74ece722c0de},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] D. Raabe, C. C. Tasan, and E. A. Olivetti, “Strategies for improving the sustainability of structural metals,” Nature, vol. 575, iss. 7781, pp. 64-74, 2019.
    [Bibtex]
    @ARTICLE{Raabe201964,
    author={Raabe, D. and Tasan, C.C. and Olivetti, E.A.},
    title={Strategies for improving the sustainability of structural metals},
    journal={Nature},
    year={2019},
    volume={575},
    number={7781},
    pages={64-74},
    doi={10.1038/s41586-019-1702-5},
    note={cited By 22},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074626378&doi=10.1038%2fs41586-019-1702-5&partnerID=40&md5=c8bfda899a1e96a227a73da311f6e094},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] L. Sharma, R. H. J. Peerlings, M. G. D. Geers, and F. Roters, “Microstructural influences on fracture at prior austenite grain boundaries in dual-phase steels,” Materials, vol. 12, iss. 22, 2019.
    [Bibtex]
    @ARTICLE{Sharma2019,
    author={Sharma, L. and Peerlings, R.H.J. and Geers, M.G.D. and Roters, F.},
    title={Microstructural influences on fracture at prior austenite grain boundaries in dual-phase steels},
    journal={Materials},
    year={2019},
    volume={12},
    number={22},
    doi={10.3390/ma12223687},
    art_number={3687},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075740954&doi=10.3390%2fma12223687&partnerID=40&md5=823c88c8c5b5dbdb6e068ecb727901fa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, and K. Schulz, “Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity,” Journal of the Mechanics and Physics of Solids, vol. 132, 2019.
    [Bibtex]
    @ARTICLE{Sudmanns2019,
    author={Sudmanns, M. and Stricker, M. and Weygand, D. and Hochrainer, T. and Schulz, K.},
    title={Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2019},
    volume={132},
    doi={10.1016/j.jmps.2019.103695},
    art_number={103695},
    note={cited By 11},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071647858&doi=10.1016%2fj.jmps.2019.103695&partnerID=40&md5=7d0e1486ab68b92169732786e928234a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli and M. Koslowski, “The effect of crystal anisotropy and plastic response on the dynamic fracture of energetic materials,” Journal of Applied Physics, vol. 126, iss. 15, 2019.
    [Bibtex]
    @ARTICLE{Grilli2019,
    author={Grilli, N. and Koslowski, M.},
    title={The effect of crystal anisotropy and plastic response on the dynamic fracture of energetic materials},
    journal={Journal of Applied Physics},
    year={2019},
    volume={126},
    number={15},
    doi={10.1063/1.5109761},
    art_number={155101},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073622571&doi=10.1063%2f1.5109761&partnerID=40&md5=7e358825b9639d51a8936072ad3e1b55},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] W. Li, L. Wang, B. Zhou, C. Liu, and X. Zeng, “Grain-scale deformation in a Mg−0.8 wt% Y alloy using crystal plasticity finite element method,” Journal of Materials Science and Technology, vol. 35, iss. 10, pp. 2200-2206, 2019.
    [Bibtex]
    @ARTICLE{Li20192200,
    author={Li, W. and Wang, L. and Zhou, B. and Liu, C. and Zeng, X.},
    title={Grain-scale deformation in a Mg−0.8 wt% Y alloy using crystal plasticity finite element method},
    journal={Journal of Materials Science and Technology},
    year={2019},
    volume={35},
    number={10},
    pages={2200-2206},
    doi={10.1016/j.jmst.2019.04.030},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069924908&doi=10.1016%2fj.jmst.2019.04.030&partnerID=40&md5=773340bbe8a3b58182e0698d68602ad9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Liu, P. Shanthraj, J. D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, and D. Raabe, “On the interaction of precipitates and tensile twins in magnesium alloys,” Acta Materialia, vol. 178, pp. 146-162, 2019.
    [Bibtex]
    @ARTICLE{Liu2019146,
    author={Liu, C. and Shanthraj, P. and Robson, J.D. and Diehl, M. and Dong, S. and Dong, J. and Ding, W. and Raabe, D.},
    title={On the interaction of precipitates and tensile twins in magnesium alloys},
    journal={Acta Materialia},
    year={2019},
    volume={178},
    pages={146-162},
    doi={10.1016/j.actamat.2019.07.046},
    note={cited By 25},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070526843&doi=10.1016%2fj.actamat.2019.07.046&partnerID=40&md5=dcc90e1d719e40e63449d0a19662ce44},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] G. Liua, D. Xiea, S. Wangb, A. Misrab, and J. Wang, “Mesoscale crystal plasticity modeling of nanoscale al-al2cu eutectic alloy,” International Journal of Plasticity, vol. 121, pp. 134-152, 2019.
    [Bibtex]
    @ARTICLE{Liua2019134,
    author={Liua, G. and Xiea, D. and Wangb, S. and Misrab, A. and Wang, J.},
    title={Mesoscale crystal plasticity modeling of nanoscale al-al2cu eutectic alloy},
    journal={International Journal of Plasticity},
    year={2019},
    volume={121},
    pages={134-152},
    doi={10.1016/j.ijplas.2019.06.008},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067609138&doi=10.1016%2fj.ijplas.2019.06.008&partnerID=40&md5=5af19b33ee5c4cd60f12c380160c490c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Lahiri, P. Shanthraj, and F. Roters, “Understanding the mechanisms of electroplasticity from a crystal plasticity perspective,” Modelling and Simulation in Materials Science and Engineering, vol. 27, iss. 8, 2019.
    [Bibtex]
    @ARTICLE{Lahiri2019,
    author={Lahiri, A. and Shanthraj, P. and Roters, F.},
    title={Understanding the mechanisms of electroplasticity from a crystal plasticity perspective},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2019},
    volume={27},
    number={8},
    doi={10.1088/1361-651X/ab43fc},
    art_number={085006},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077249424&doi=10.1088%2f1361-651X%2fab43fc&partnerID=40&md5=34329f392b1083ad04e72dae92faa894},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Fujita, S. Igi, M. Diehl, F. Roters, and D. Raabe, “The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis,” Modelling and Simulation in Materials Science and Engineering, vol. 27, iss. 8, 2019.
    [Bibtex]
    @ARTICLE{Fujita2019,
    author={Fujita, N. and Igi, S. and Diehl, M. and Roters, F. and Raabe, D.},
    title={The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2019},
    volume={27},
    number={8},
    doi={10.1088/1361-651X/ab4143},
    art_number={085005},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081131730&doi=10.1088%2f1361-651X%2fab4143&partnerID=40&md5=b1b76adcc2f0dcaee7bb4d9297064e12},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Denk, A. Nischler, L. Whitmore, O. Huber, and H. Saage, “Discontinuous and inhomogeneous strain distributions under monotonic and cyclic loading in textured wrought magnesium alloys,” Materials Science and Engineering A, vol. 764, 2019.
    [Bibtex]
    @ARTICLE{Denk2019,
    author={Denk, J. and Nischler, A. and Whitmore, L. and Huber, O. and Saage, H.},
    title={Discontinuous and inhomogeneous strain distributions under monotonic and cyclic loading in textured wrought magnesium alloys},
    journal={Materials Science and Engineering A},
    year={2019},
    volume={764},
    doi={10.1016/j.msea.2019.138182},
    art_number={138182},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069653468&doi=10.1016%2fj.msea.2019.138182&partnerID=40&md5=b9296da394b10dbcb15d57d1dda923a8},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Kale, P. Garg, B. G. Bazehhour, S. Srinivasan, M. A. Bhatia, P. Peralta, and K. N. Solanki, “Oxygen effects on crystal plasticity of Titanium: A multiscale calibration and validation framework,” Acta Materialia, vol. 176, pp. 19-32, 2019.
    [Bibtex]
    @ARTICLE{Kale201919,
    author={Kale, C. and Garg, P. and Bazehhour, B.G. and Srinivasan, S. and Bhatia, M.A. and Peralta, P. and Solanki, K.N.},
    title={Oxygen effects on crystal plasticity of Titanium: A multiscale calibration and validation framework},
    journal={Acta Materialia},
    year={2019},
    volume={176},
    pages={19-32},
    doi={10.1016/j.actamat.2019.06.040},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068424518&doi=10.1016%2fj.actamat.2019.06.040&partnerID=40&md5=544c3394a4530f3e3f1d7d337f2ea745},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Y. Pang, B. K. Chen, and W. Liu, “An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor,” International Journal of Advanced Manufacturing Technology, vol. 103, iss. 5-8, pp. 2707-2724, 2019.
    [Bibtex]
    @ARTICLE{Pang20192707,
    author={Pang, Y. and Chen, B.K. and Liu, W.},
    title={An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor},
    journal={International Journal of Advanced Manufacturing Technology},
    year={2019},
    volume={103},
    number={5-8},
    pages={2707-2724},
    doi={10.1007/s00170-019-03717-y},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065123798&doi=10.1007%2fs00170-019-03717-y&partnerID=40&md5=753e3a607040f9845e27e0c61308dd39},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. R. Mianroodi, P. Shanthraj, P. Kontis, J. Cormier, B. Gault, B. Svendsen, and D. Raabe, “Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co,” Acta Materialia, vol. 175, pp. 250-261, 2019.
    [Bibtex]
    @ARTICLE{Mianroodi2019250,
    author={Mianroodi, J.R. and Shanthraj, P. and Kontis, P. and Cormier, J. and Gault, B. and Svendsen, B. and Raabe, D.},
    title={Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co},
    journal={Acta Materialia},
    year={2019},
    volume={175},
    pages={250-261},
    doi={10.1016/j.actamat.2019.06.008},
    note={cited By 23},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067378132&doi=10.1016%2fj.actamat.2019.06.008&partnerID=40&md5=3a3aee49825500faa7e24a6d3e0baf40},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, and F. D. Fischer, “Unifcation of the non-linear geometric transformation theory of martensite and crystal plasticity – Application to dislocated lath martensite in steels,” International Journal of Plasticity, vol. 119, pp. 140-155, 2019.
    [Bibtex]
    @ARTICLE{Petersmann2019140,
    author={Petersmann, M. and Antretter, T. and Cailletaud, G. and Sannikov, A. and Ehlenbröker, U. and Fischer, F.D.},
    title={Unifcation of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels},
    journal={International Journal of Plasticity},
    year={2019},
    volume={119},
    pages={140-155},
    doi={10.1016/j.ijplas.2019.02.016},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063265531&doi=10.1016%2fj.ijplas.2019.02.016&partnerID=40&md5=8b636d2f8c3471519f047ef3bf692f10},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Quadfasel, M. Teller, M. Madivala, C. Haase, F. Roters, and G. Hirt, “Computer-aided material design for crash boxes made of high manganese steels,” Metals, vol. 9, iss. 7, 2019.
    [Bibtex]
    @ARTICLE{Quadfasel2019,
    author={Quadfasel, A. and Teller, M. and Madivala, M. and Haase, C. and Roters, F. and Hirt, G.},
    title={Computer-aided material design for crash boxes made of high manganese steels},
    journal={Metals},
    year={2019},
    volume={9},
    number={7},
    doi={10.3390/met9070772},
    art_number={772},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073283187&doi=10.3390%2fmet9070772&partnerID=40&md5=899219d2b080943a3bfa26fc0e980c43},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. Balusu, R. Kelton, E. I. Meletis, and H. Huang, “Investigating the relationship between grain orientation and surface height changes in nickel polycrystals under tensile plastic deformation,” Mechanics of Materials, vol. 134, pp. 165-175, 2019.
    [Bibtex]
    @ARTICLE{Balusu2019165,
    author={Balusu, K. and Kelton, R. and Meletis, E.I. and Huang, H.},
    title={Investigating the relationship between grain orientation and surface height changes in nickel polycrystals under tensile plastic deformation},
    journal={Mechanics of Materials},
    year={2019},
    volume={134},
    pages={165-175},
    doi={10.1016/j.mechmat.2019.04.011},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066101857&doi=10.1016%2fj.mechmat.2019.04.011&partnerID=40&md5=8f1fa99a60ee1f549d96db54842aeded},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] L. Koschmieder, S. Hojda, M. Apel, R. Altenfeld, Y. Bami, C. Haase, M. Lin, A. Vuppala, G. Hirt, and G. J. Schmitz, “AixViPMaP®—an Operational Platform for Microstructure Modeling Workflows,” Integrating Materials and Manufacturing Innovation, vol. 8, iss. 2, pp. 122-143, 2019.
    [Bibtex]
    @ARTICLE{Koschmieder2019122,
    author={Koschmieder, L. and Hojda, S. and Apel, M. and Altenfeld, R. and Bami, Y. and Haase, C. and Lin, M. and Vuppala, A. and Hirt, G. and Schmitz, G.J.},
    title={AixViPMaP®—an Operational Platform for Microstructure Modeling Workflows},
    journal={Integrating Materials and Manufacturing Innovation},
    year={2019},
    volume={8},
    number={2},
    pages={122-143},
    doi={10.1007/s40192-019-00138-3},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075584058&doi=10.1007%2fs40192-019-00138-3&partnerID=40&md5=e04bcac6fc77d56cdeabd21be3e680c5},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, and D. Raabe, “Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper,” International Journal of Plasticity, vol. 113, pp. 52-73, 2019.
    [Bibtex]
    @ARTICLE{Lu201952,
    author={Lu, X. and Zhang, X. and Shi, M. and Roters, F. and Kang, G. and Raabe, D.},
    title={Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper},
    journal={International Journal of Plasticity},
    year={2019},
    volume={113},
    pages={52-73},
    doi={10.1016/j.ijplas.2018.09.007},
    note={cited By 40},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054138448&doi=10.1016%2fj.ijplas.2018.09.007&partnerID=40&md5=0a497d72f9c69944fbe3bb9286d5e24e},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. G. Isaenkova, Y. A. Perlovich, A. E. Rubanov, and A. V. Yudin, “Anisotropy of the mechanical properties of austenitic steel products obtained by selective laser melting,” CIS Iron and Steel Review, vol. 18, pp. 64-68, 2019.
    [Bibtex]
    @ARTICLE{Isaenkova201964,
    author={Isaenkova, M.G. and Perlovich, Y.A. and Rubanov, A.E. and Yudin, A.V.},
    title={Anisotropy of the mechanical properties of austenitic steel products obtained by selective laser melting},
    journal={CIS Iron and Steel Review},
    year={2019},
    volume={18},
    pages={64-68},
    doi={10.17580/cisisr.2019.02.13},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078793707&doi=10.17580%2fcisisr.2019.02.13&partnerID=40&md5=14bfd45ca26d6f47077260eef651128e},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] V. Atreya, C. Bos, and M. J. Santofimia, “Cellular automata modeling of plastic deformation in ferrite during martensite formation in dual-phase steels.” 2019, pp. 740-749.
    [Bibtex]
    @CONFERENCE{Atreya2019740,
    author={Atreya, V. and Bos, C. and Santofimia, M.J.},
    title={Cellular automata modeling of plastic deformation in ferrite during martensite formation in dual-phase steels},
    journal={Proceedings for the 8th International Conference on Modeling and Simulation of Metallurgical Processes in Steelmaking, STEELSIM 2019},
    year={2019},
    pages={740-749},
    doi={10.33313/503/078},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082004554&doi=10.33313%2f503%2f078&partnerID=40&md5=9a05643c8b3a8417591f246903517482},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe, Spectral solvers for crystal plasticity and multi-physics simulations, , 2019.
    [Bibtex]
    @BOOK{Shanthraj20191347,
    author={Shanthraj, P. and Diehl, M. and Eisenlohr, P. and Roters, F. and Raabe, D.},
    title={Spectral solvers for crystal plasticity and multi-physics simulations},
    journal={Handbook of Mechanics of Materials},
    year={2019},
    pages={1347-1372},
    doi={10.1007/978-981-10-6884-3_80},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085427552&doi=10.1007%2f978-981-10-6884-3_80&partnerID=40&md5=096724779e8dd2fc7309931ef1727f1c},
    document_type={Book Chapter},
    source={Scopus},
    }