Publications using DAMASK

2021

  • [DOI] P. Kumar, T. -K. Lee, I. Dutta, Z. Huang, and P. Conway, “Microstructure and Mechanical Reliability Issues of TSV,” Springer Series in Advanced Microelectronics, vol. 64, pp. 71-105, 2021.
    [Bibtex]
    @ARTICLE{Kumar202171,
    author={Kumar, P. and Lee, T.-K. and Dutta, I. and Huang, Z. and Conway, P.},
    title={Microstructure and Mechanical Reliability Issues of TSV},
    journal={Springer Series in Advanced Microelectronics},
    year={2021},
    volume={64},
    pages={71-105},
    doi={10.1007/978-981-15-7090-2_4},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096746886&doi=10.1007%2f978-981-15-7090-2_4&partnerID=40&md5=dc3180d23e7e5261ae5beb889dadca2f},
    document_type={Book Chapter},
    source={Scopus},
    }

2020

  • [DOI] N. Grilli, A. C. F. Cocks, and E. Tarleton, “A phase field model for the growth and characteristic thickness of deformation-induced twins,” Journal of the Mechanics and Physics of Solids, vol. 143, 2020.
    [Bibtex]
    @ARTICLE{Grilli2020,
    author={Grilli, N. and Cocks, A.C.F. and Tarleton, E.},
    title={A phase field model for the growth and characteristic thickness of deformation-induced twins},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2020},
    volume={143},
    doi={10.1016/j.jmps.2020.104061},
    art_number={104061},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087202115&doi=10.1016%2fj.jmps.2020.104061&partnerID=40&md5=a1da4127012a1c8866ef76859de19a66},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Deeparekha, A. Gupta, M. Demiral, and R. K. Khatirkar, “Cold rolling of an interstitial free (IF) steel—Experiments and simulations,” Mechanics of Materials, vol. 148, 2020.
    [Bibtex]
    @ARTICLE{Deeparekha2020,
    author={Deeparekha, N. and Gupta, A. and Demiral, M. and Khatirkar, R.K.},
    title={Cold rolling of an interstitial free (IF) steel—Experiments and simulations},
    journal={Mechanics of Materials},
    year={2020},
    volume={148},
    doi={10.1016/j.mechmat.2020.103420},
    art_number={103420},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085250537&doi=10.1016%2fj.mechmat.2020.103420&partnerID=40&md5=4d98520846ab89fb4799be7562852563},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Prüger and B. Kiefer, “A comparative study of integration algorithms for finite single crystal (visco-)plasticity,” International Journal of Mechanical Sciences, vol. 180, 2020.
    [Bibtex]
    @ARTICLE{Prüger2020,
    author={Prüger, S. and Kiefer, B.},
    title={A comparative study of integration algorithms for finite single crystal (visco-)plasticity},
    journal={International Journal of Mechanical Sciences},
    year={2020},
    volume={180},
    doi={10.1016/j.ijmecsci.2020.105740},
    art_number={105740},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085107851&doi=10.1016%2fj.ijmecsci.2020.105740&partnerID=40&md5=254c676e58d2ed48bc812a5a65047cf3},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] W. Xia, G. Dehm, and S. Brinckmann, “Investigation of single asperity wear at the microscale in an austenitic steel,” Wear, vol. 452-453, 2020.
    [Bibtex]
    @ARTICLE{Xia2020,
    author={Xia, W. and Dehm, G. and Brinckmann, S.},
    title={Investigation of single asperity wear at the microscale in an austenitic steel},
    journal={Wear},
    year={2020},
    volume={452-453},
    doi={10.1016/j.wear.2020.203289},
    art_number={203289},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083282427&doi=10.1016%2fj.wear.2020.203289&partnerID=40&md5=6e818691c12fc8ae2c5577b7eff5ca35},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. E. Ricciardi, O. A. Chkrebtii, and S. R. Niezgoda, “Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework,” Integrating Materials and Manufacturing Innovation, vol. 9, iss. 2, pp. 181-198, 2020.
    [Bibtex]
    @ARTICLE{Ricciardi2020181,
    author={Ricciardi, D.E. and Chkrebtii, O.A. and Niezgoda, S.R.},
    title={Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework},
    journal={Integrating Materials and Manufacturing Innovation},
    year={2020},
    volume={9},
    number={2},
    pages={181-198},
    doi={10.1007/s40192-020-00176-2},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086785456&doi=10.1007%2fs40192-020-00176-2&partnerID=40&md5=f174cf9255eabd41d15c4b8141ccdbaf},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. E. Shin, S. Nambu, H. Kim, J. Inoue, T. Koseki, and S. -J. Lee, “Evaluation of factors influencing the lath martensitic deformation behavior of multi-layered steels,” Materials Science and Engineering A, vol. 785, 2020.
    [Bibtex]
    @ARTICLE{Shin2020,
    author={Shin, S.E. and Nambu, S. and Kim, H. and Inoue, J. and Koseki, T. and Lee, S.-J.},
    title={Evaluation of factors influencing the lath martensitic deformation behavior of multi-layered steels},
    journal={Materials Science and Engineering A},
    year={2020},
    volume={785},
    doi={10.1016/j.msea.2020.139353},
    art_number={139353},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083759210&doi=10.1016%2fj.msea.2020.139353&partnerID=40&md5=35209f522633aa9eba7791bf9239392c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl, “Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model,” Crystals, vol. 10, iss. 3, 2020.
    [Bibtex]
    @ARTICLE{Qayyum2020,
    author={Qayyum, F. and Guk, S. and Schmidtchen, M. and Kawalla, R. and Prahl, U.},
    title={Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model},
    journal={Crystals},
    year={2020},
    volume={10},
    number={3},
    doi={10.3390/cryst10030221},
    art_number={221},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082599531&doi=10.3390%2fcryst10030221&partnerID=40&md5=56800ee16675cc79971ce90fcb016ee0},
    document_type={Article},
    source={Scopus},
    }
  • Y. G. An, W. D. T. Spanjer, and P. J. J. Kok, “Virtual experimental study of microstructure design of dual phase steel for optimal formability.” 2020, pp. 1451-1461.
    [Bibtex]
    @CONFERENCE{An20201451,
    author={An, Y.G. and Spanjer, W.D.T. and Kok, P.J.J.},
    title={Virtual experimental study of microstructure design of dual phase steel for optimal formability},
    journal={Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018},
    year={2020},
    pages={1451-1461},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081066852&partnerID=40&md5=9c4c451941745de6720aa101e6401b9e},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] S. Kitsuya, H. Ohtsubo, N. Fujita, K. Ichimiya, and K. Hase, “Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel,” ISIJ International, vol. 60, iss. 2, pp. 346-351, 2020.
    [Bibtex]
    @ARTICLE{Kitsuya2020346,
    author={Kitsuya, S. and Ohtsubo, H. and Fujita, N. and Ichimiya, K. and Hase, K.},
    title={Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel},
    journal={ISIJ International},
    year={2020},
    volume={60},
    number={2},
    pages={346-351},
    doi={10.2355/isijinternational.ISIJINT-2019-164},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082121402&doi=10.2355%2fisijinternational.ISIJINT-2019-164&partnerID=40&md5=9bebd8b3d3896750468f099419dcc671},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Weidner, “Prospects of complementary in situ techniques,” Springer Series in Materials Science, vol. 295, pp. 365-384, 2020.
    [Bibtex]
    @ARTICLE{Weidner2020365,
    author={Weidner, A.},
    title={Prospects of complementary in situ techniques},
    journal={Springer Series in Materials Science},
    year={2020},
    volume={295},
    pages={365-384},
    doi={10.1007/978-3-030-37149-4_8},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084662983&doi=10.1007%2f978-3-030-37149-4_8&partnerID=40&md5=b809c34f538f8da8cc3b7d001e7af041},
    document_type={Book Chapter},
    source={Scopus},
    }

2019

  • [DOI] Y. Miyazawa, F. Briffod, T. Shiraiwa, and M. Enoki, “Prediction of cyclic stress-strain property of steels by crystal plasticity simulations and machine learning,” Materials, vol. 12, iss. 22, 2019.
    [Bibtex]
    @ARTICLE{Miyazawa2019,
    author={Miyazawa, Y. and Briffod, F. and Shiraiwa, T. and Enoki, M.},
    title={Prediction of cyclic stress-strain property of steels by crystal plasticity simulations and machine learning},
    journal={Materials},
    year={2019},
    volume={12},
    number={22},
    doi={10.3390/ma12223668},
    art_number={3668},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075798012&doi=10.3390%2fma12223668&partnerID=40&md5=4db2c96db9c428e0468a0e6fa254bc1b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. Kim, T. Yamamoto, Y. Sato, and J. Inoue, “Establishment of structure-property linkages using a Bayesian model selection method: Application to a dual-phase metallic composite system,” Acta Materialia, vol. 176, pp. 264-277, 2019.
    [Bibtex]
    @ARTICLE{Kim2019264,
    author={Kim, H. and Yamamoto, T. and Sato, Y. and Inoue, J.},
    title={Establishment of structure-property linkages using a Bayesian model selection method: Application to a dual-phase metallic composite system},
    journal={Acta Materialia},
    year={2019},
    volume={176},
    pages={264-277},
    doi={10.1016/j.actamat.2019.07.006},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069509882&doi=10.1016%2fj.actamat.2019.07.006&partnerID=40&md5=954c4822f7e90d6f785800f6e93bb96c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] T. Park, L. G. Hector, X. Hu, F. Abu-Farha, M. R. Fellinger, H. Kim, R. Esmaeilpour, and F. Pourboghrat, “Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation,” International Journal of Plasticity, vol. 120, pp. 1-46, 2019.
    [Bibtex]
    @ARTICLE{Park20191,
    author={Park, T. and Hector, L.G. and Hu, X. and Abu-Farha, F. and Fellinger, M.R. and Kim, H. and Esmaeilpour, R. and Pourboghrat, F.},
    title={Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation},
    journal={International Journal of Plasticity},
    year={2019},
    volume={120},
    pages={1-46},
    doi={10.1016/j.ijplas.2019.03.010},
    note={cited By 14},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066823101&doi=10.1016%2fj.ijplas.2019.03.010&partnerID=40&md5=72dcec6610b11ac894cae0bfe4f508ce},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Piazolo, P. D. Bons, A. Griera, M. -G. Llorens, E. Gomez-Rivas, D. Koehn, J. Wheeler, R. Gardner, J. R. A. Godinho, L. Evans, R. A. Lebensohn, and M. W. Jessell, “A review of numerical modelling of the dynamics of microstructural development in rocks and ice: Past, present and future,” Journal of Structural Geology, vol. 125, pp. 111-123, 2019.
    [Bibtex]
    @ARTICLE{Piazolo2019111,
    author={Piazolo, S. and Bons, P.D. and Griera, A. and Llorens, M.-G. and Gomez-Rivas, E. and Koehn, D. and Wheeler, J. and Gardner, R. and Godinho, J.R.A. and Evans, L. and Lebensohn, R.A. and Jessell, M.W.},
    title={A review of numerical modelling of the dynamics of microstructural development in rocks and ice: Past, present and future},
    journal={Journal of Structural Geology},
    year={2019},
    volume={125},
    pages={111-123},
    doi={10.1016/j.jsg.2018.05.025},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048458894&doi=10.1016%2fj.jsg.2018.05.025&partnerID=40&md5=0b7f37c3a01af3e25061e7affd904f2a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. U. H. Tariq, L. Gyansah, X. Qiu, C. Jia, H. B. Awais, C. Zheng, H. Du, J. Wang, and T. Xiong, “Achieving strength-ductility synergy in cold spray additively manufactured Al/B 4 C composites through a hybrid post-deposition treatment,” Journal of Materials Science and Technology, vol. 35, iss. 6, pp. 1053-1063, 2019.
    [Bibtex]
    @ARTICLE{Tariq20191053,
    author={Tariq, N.U.H. and Gyansah, L. and Qiu, X. and Jia, C. and Awais, H.B. and Zheng, C. and Du, H. and Wang, J. and Xiong, T.},
    title={Achieving strength-ductility synergy in cold spray additively manufactured Al/B 4 C composites through a hybrid post-deposition treatment},
    journal={Journal of Materials Science and Technology},
    year={2019},
    volume={35},
    number={6},
    pages={1053-1063},
    doi={10.1016/j.jmst.2018.12.022},
    note={cited By 10},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062456923&doi=10.1016%2fj.jmst.2018.12.022&partnerID=40&md5=af0d82e5eb65984627cc4d6da07751c9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Qayyum, S. Guk, R. Kawalla, and U. Prahl, “Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel,” Steel Research International, vol. 90, iss. 6, 2019.
    [Bibtex]
    @ARTICLE{Qayyum2019,
    author={Qayyum, F. and Guk, S. and Kawalla, R. and Prahl, U.},
    title={Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel},
    journal={Steel Research International},
    year={2019},
    volume={90},
    number={6},
    doi={10.1002/srin.201800369},
    art_number={1800369},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059141948&doi=10.1002%2fsrin.201800369&partnerID=40&md5=04e852fbecd8c6b7a67ca97f455bedbe},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. von Kobylinski, R. Lawitzki, M. Hofmann, C. Krempaszky, and E. Werner, “Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling,” Continuum Mechanics and Thermodynamics, vol. 31, iss. 3, pp. 691-702, 2019.
    [Bibtex]
    @ARTICLE{vonKobylinski2019691,
    author={von Kobylinski, J. and Lawitzki, R. and Hofmann, M. and Krempaszky, C. and Werner, E.},
    title={Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling},
    journal={Continuum Mechanics and Thermodynamics},
    year={2019},
    volume={31},
    number={3},
    pages={691-702},
    doi={10.1007/s00161-018-0720-0},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055345288&doi=10.1007%2fs00161-018-0720-0&partnerID=40&md5=9c849333183c06451e99dbdf34e052b8},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] T. Fischer, E. Werner, S. Ulan kyzy, and O. Munz, “Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading,” Continuum Mechanics and Thermodynamics, vol. 31, iss. 3, pp. 703-713, 2019.
    [Bibtex]
    @ARTICLE{Fischer2019703,
    author={Fischer, T. and Werner, E. and Ulan kyzy, S. and Munz, O.},
    title={Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading},
    journal={Continuum Mechanics and Thermodynamics},
    year={2019},
    volume={31},
    number={3},
    pages={703-713},
    doi={10.1007/s00161-018-0721-z},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062613710&doi=10.1007%2fs00161-018-0721-z&partnerID=40&md5=df75ffbab2d862bef8f97a6f6e6eb43f},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Briffod, T. Shiraiwa, and M. Enoki, “Numerical investigation of the influence of twinning/detwinning on fatigue crack initiation in AZ31 magnesium alloy,” Materials Science and Engineering A, vol. 753, pp. 79-90, 2019.
    [Bibtex]
    @ARTICLE{Briffod201979,
    author={Briffod, F. and Shiraiwa, T. and Enoki, M.},
    title={Numerical investigation of the influence of twinning/detwinning on fatigue crack initiation in AZ31 magnesium alloy},
    journal={Materials Science and Engineering A},
    year={2019},
    volume={753},
    pages={79-90},
    doi={10.1016/j.msea.2019.03.030},
    note={cited By 13},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062721479&doi=10.1016%2fj.msea.2019.03.030&partnerID=40&md5=431aa5783bfb653e5d50169b73415e19},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. K. Ravi, M. Seefeldt, A. Van Bael, J. Gawad, and D. Roose, “Multi-scale material modelling to predict the material anisotropy of multi-phase steels,” Computational Materials Science, vol. 160, pp. 382-396, 2019.
    [Bibtex]
    @ARTICLE{Ravi2019382,
    author={Ravi, S.K. and Seefeldt, M. and Van Bael, A. and Gawad, J. and Roose, D.},
    title={Multi-scale material modelling to predict the material anisotropy of multi-phase steels},
    journal={Computational Materials Science},
    year={2019},
    volume={160},
    pages={382-396},
    doi={10.1016/j.commatsci.2019.01.028},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060458708&doi=10.1016%2fj.commatsci.2019.01.028&partnerID=40&md5=41e4c78669bb45e72a7995d113fb8ab1},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. Svoboda, W. Ecker, V. I. Razumovskiy, G. A. Zickler, and F. D. Fischer, “Kinetics of interaction of impurity interstitials with dislocations revisited,” Progress in Materials Science, vol. 101, pp. 172-206, 2019.
    [Bibtex]
    @ARTICLE{Svoboda2019172,
    author={Svoboda, J. and Ecker, W. and Razumovskiy, V.I. and Zickler, G.A. and Fischer, F.D.},
    title={Kinetics of interaction of impurity interstitials with dislocations revisited},
    journal={Progress in Materials Science},
    year={2019},
    volume={101},
    pages={172-206},
    doi={10.1016/j.pmatsci.2018.10.001},
    note={cited By 9},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058229143&doi=10.1016%2fj.pmatsci.2018.10.001&partnerID=40&md5=fbde98ca89d5f97087ea2dd768a5ed47},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] T. -L. Cheng, Y. -H. Wen, and J. A. Hawk, “Diffuse interface approach to modeling crystal plasticity with accommodation of grain boundary sliding,” International Journal of Plasticity, vol. 114, pp. 106-125, 2019.
    [Bibtex]
    @ARTICLE{Cheng2019106,
    author={Cheng, T.-L. and Wen, Y.-H. and Hawk, J.A.},
    title={Diffuse interface approach to modeling crystal plasticity with accommodation of grain boundary sliding},
    journal={International Journal of Plasticity},
    year={2019},
    volume={114},
    pages={106-125},
    doi={10.1016/j.ijplas.2018.10.012},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056220182&doi=10.1016%2fj.ijplas.2018.10.012&partnerID=40&md5=c9e9b89bfd48bbf02c5bd9c4352b365b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, and J. Wang, “Shock-induced two types of 101¯2 sequential twinning in Titanium,” Acta Materialia, vol. 165, pp. 547-560, 2019.
    [Bibtex]
    @ARTICLE{Xu2019547,
    author={Xu, S. and Zhou, P. and Liu, G. and Xiao, D. and Gong, M. and Wang, J.},
    title={Shock-induced two types of {101¯2} sequential twinning in Titanium},
    journal={Acta Materialia},
    year={2019},
    volume={165},
    pages={547-560},
    doi={10.1016/j.actamat.2018.12.017},
    note={cited By 11},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058613381&doi=10.1016%2fj.actamat.2018.12.017&partnerID=40&md5=4a04d045d0135f546683afc43c4a5cc6},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Dang, S. Chen, L. Liu, E. Maire, J. Adrien, S. Cazottes, W. Xiao, C. Ma, and L. Zhou, “Analysis of hybrid fracture in α/β titanium alloy with lamellar microstructure,” Materials Science and Engineering A, vol. 744, pp. 54-63, 2019.
    [Bibtex]
    @ARTICLE{Dang201954,
    author={Dang, N. and Chen, S. and Liu, L. and Maire, E. and Adrien, J. and Cazottes, S. and Xiao, W. and Ma, C. and Zhou, L.},
    title={Analysis of hybrid fracture in α/β titanium alloy with lamellar microstructure},
    journal={Materials Science and Engineering A},
    year={2019},
    volume={744},
    pages={54-63},
    doi={10.1016/j.msea.2018.12.007},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057751011&doi=10.1016%2fj.msea.2018.12.007&partnerID=40&md5=703e3bf20a500cd038f274363bb585b7},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] R. Dadhich and A. Alankar, “Coupled crystal plasticity-phase field modeling of multi-phase metals.” 2019, pp. 104-111.
    [Bibtex]
    @CONFERENCE{Dadhich2019104,
    author={Dadhich, R. and Alankar, A.},
    title={Coupled crystal plasticity-phase field modeling of multi-phase metals},
    journal={Procedia Structural Integrity},
    year={2019},
    volume={14},
    pages={104-111},
    doi={10.1016/j.prostr.2019.05.014},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074639916&doi=10.1016%2fj.prostr.2019.05.014&partnerID=40&md5=012e786dcc7fa5c4b95f4b41e6c630b8},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] B. Berisha, S. Hirsiger, H. Hippke, P. Hora, A. Mariaux, D. Leyvraz, and C. Bezençon, “Modeling of anisotropic hardening and grain size effects based on advanced numerical methods and crystal plasticity,” Archives of Mechanics, vol. 71, iss. 4-5, pp. 489-505, 2019.
    [Bibtex]
    @ARTICLE{Berisha2019489,
    author={Berisha, B. and Hirsiger, S. and Hippke, H. and Hora, P. and Mariaux, A. and Leyvraz, D. and Bezençon, C.},
    title={Modeling of anisotropic hardening and grain size effects based on advanced numerical methods and crystal plasticity},
    journal={Archives of Mechanics},
    year={2019},
    volume={71},
    number={4-5},
    pages={489-505},
    doi={10.24423/aom.3162},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078983237&doi=10.24423%2faom.3162&partnerID=40&md5=3878ababaaddad9a81dc33d5dd6b8956},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. F. Tang, L. F. Peng, S. Q. Shi, and M. W. Fu, “Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation,” International Journal of Plasticity, vol. 118, pp. 147-172, 2019.
    [Bibtex]
    @ARTICLE{Tang2019147,
    author={Tang, X.F. and Peng, L.F. and Shi, S.Q. and Fu, M.W.},
    title={Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation},
    journal={International Journal of Plasticity},
    year={2019},
    volume={118},
    pages={147-172},
    doi={10.1016/j.ijplas.2019.02.004},
    note={cited By 10},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062287139&doi=10.1016%2fj.ijplas.2019.02.004&partnerID=40&md5=ba6f8ef605d1fe22994199294ceb74f6},
    document_type={Article},
    source={Scopus},
    }

2018

  • [DOI] S. Yan, H. Zhou, B. Xing, S. Zhang, L. Li, and Q. H. Qin, “Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale,” Materials and Design, vol. 160, pp. 313-324, 2018.
    [Bibtex]
    @ARTICLE{Yan2018313,
    author={Yan, S. and Zhou, H. and Xing, B. and Zhang, S. and Li, L. and Qin, Q.H.},
    title={Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale},
    journal={Materials and Design},
    year={2018},
    volume={160},
    pages={313-324},
    doi={10.1016/j.matdes.2018.09.031},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053405630&doi=10.1016%2fj.matdes.2018.09.031&partnerID=40&md5=0f4360d5d70d8a7331085bdfa112ef1d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Wang, P. Shanthraj, H. Springer, and D. Raabe, “Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels,” Materials and Design, vol. 160, pp. 557-571, 2018.
    [Bibtex]
    @ARTICLE{Wang2018557,
    author={Wang, D. and Shanthraj, P. and Springer, H. and Raabe, D.},
    title={Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels},
    journal={Materials and Design},
    year={2018},
    volume={160},
    pages={557-571},
    doi={10.1016/j.matdes.2018.09.033},
    note={cited By 13},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054467454&doi=10.1016%2fj.matdes.2018.09.033&partnerID=40&md5=fe477929ddbacc6b128690f1d38f0851},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] R. Darvishi Kamachali, C. Schwarze, M. Lin, M. Diehl, P. Shanthraj, U. Prahl, I. Steinbach, and D. Raabe, “Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling,” Computational Materials Science, vol. 155, pp. 541-553, 2018.
    [Bibtex]
    @ARTICLE{DarvishiKamachali2018541,
    author={Darvishi Kamachali, R. and Schwarze, C. and Lin, M. and Diehl, M. and Shanthraj, P. and Prahl, U. and Steinbach, I. and Raabe, D.},
    title={Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling},
    journal={Computational Materials Science},
    year={2018},
    volume={155},
    pages={541-553},
    doi={10.1016/j.commatsci.2018.09.011},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053450169&doi=10.1016%2fj.commatsci.2018.09.011&partnerID=40&md5=291f9e6041ffaf890cca63e075be1ea9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] B. Mohammed, T. Park, F. Pourboghrat, J. Hu, R. Esmaeilpour, and F. Abu-Farha, “Multiscale crystal plasticity modeling of multiphase advanced high strength steel,” International Journal of Solids and Structures, vol. 151, pp. 57-75, 2018.
    [Bibtex]
    @ARTICLE{Mohammed201857,
    author={Mohammed, B. and Park, T. and Pourboghrat, F. and Hu, J. and Esmaeilpour, R. and Abu-Farha, F.},
    title={Multiscale crystal plasticity modeling of multiphase advanced high strength steel},
    journal={International Journal of Solids and Structures},
    year={2018},
    volume={151},
    pages={57-75},
    doi={10.1016/j.ijsolstr.2017.05.007},
    note={cited By 13},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021793388&doi=10.1016%2fj.ijsolstr.2017.05.007&partnerID=40&md5=6f0dc043db5270e27fbada84f3997dea},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Stricker, M. Sudmanns, K. Schulz, T. Hochrainer, and D. Weygand, “Dislocation multiplication in stage II deformation of fcc multi-slip single crystals,” Journal of the Mechanics and Physics of Solids, vol. 119, pp. 319-333, 2018.
    [Bibtex]
    @ARTICLE{Stricker2018319,
    author={Stricker, M. and Sudmanns, M. and Schulz, K. and Hochrainer, T. and Weygand, D.},
    title={Dislocation multiplication in stage II deformation of fcc multi-slip single crystals},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2018},
    volume={119},
    pages={319-333},
    doi={10.1016/j.jmps.2018.07.003},
    note={cited By 11},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049835657&doi=10.1016%2fj.jmps.2018.07.003&partnerID=40&md5=ba5e842d44e71ead581bd6c11c253c2a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Wang, M. Diehl, F. Roters, and D. Raabe, “On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity,” Mechanics of Materials, vol. 125, pp. 70-79, 2018.
    [Bibtex]
    @ARTICLE{Wang201870,
    author={Wang, D. and Diehl, M. and Roters, F. and Raabe, D.},
    title={On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity},
    journal={Mechanics of Materials},
    year={2018},
    volume={125},
    pages={70-79},
    doi={10.1016/j.mechmat.2018.06.007},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050279326&doi=10.1016%2fj.mechmat.2018.06.007&partnerID=40&md5=8e1ac1d9fa3e43f657f5fdfabe39a127},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Takenaka, N. Fujita, Y. Hayakawa, and N. Tsuji, “Unique effect of carbon addition on development of deformation texture through changes in slip activation and twin deformation in heavily cold-rolled Fe-3% Si alloys,” Acta Materialia, vol. 157, pp. 196-208, 2018.
    [Bibtex]
    @ARTICLE{Takenaka2018196,
    author={Takenaka, M. and Fujita, N. and Hayakawa, Y. and Tsuji, N.},
    title={Unique effect of carbon addition on development of deformation texture through changes in slip activation and twin deformation in heavily cold-rolled Fe-3% Si alloys},
    journal={Acta Materialia},
    year={2018},
    volume={157},
    pages={196-208},
    doi={10.1016/j.actamat.2018.07.019},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050239066&doi=10.1016%2fj.actamat.2018.07.019&partnerID=40&md5=f54e76ee499ae9abb9bb3b839762b62f},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Hirsiger, B. Berisha, C. Raemy, and P. Hora, “On the prediction of yield loci based on crystal plasticity models and the spectral solver framework.” 2018.
    [Bibtex]
    @CONFERENCE{Hirsiger2018,
    author={Hirsiger, S. and Berisha, B. and Raemy, C. and Hora, P.},
    title={On the prediction of yield loci based on crystal plasticity models and the spectral solver framework},
    journal={Journal of Physics: Conference Series},
    year={2018},
    volume={1063},
    number={1},
    doi={10.1088/1742-6596/1063/1/012056},
    art_number={12056},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051861632&doi=10.1088%2f1742-6596%2f1063%2f1%2f012056&partnerID=40&md5=014d7d61f4b1f72ed059ecb1fd2a511c},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] A. Van Bael, P. Seventekidis, M. Seefeldt, D. Roose, F. Han, F. Roters, and P. Kok, “Yield locus prediction using statistical and RVE-based fast Fourier transform crystal plasticity models and validation for drawing steels.” 2018.
    [Bibtex]
    @CONFERENCE{VanBael2018,
    author={Van Bael, A. and Seventekidis, P. and Seefeldt, M. and Roose, D. and Han, F. and Roters, F. and Kok, P.},
    title={Yield locus prediction using statistical and RVE-based fast Fourier transform crystal plasticity models and validation for drawing steels},
    journal={Journal of Physics: Conference Series},
    year={2018},
    volume={1063},
    number={1},
    doi={10.1088/1742-6596/1063/1/012051},
    art_number={12051},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051868376&doi=10.1088%2f1742-6596%2f1063%2f1%2f012051&partnerID=40&md5=f667fd16622d534a59a4d305fc591ef2},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] D. Shore, P. Van Houtte, D. Roose, and A. Van Bael, “Multiscale modelling of asymmetric rolling with an anisotropic constitutive law,” Comptes Rendus – Mecanique, vol. 346, iss. 8, pp. 724-742, 2018.
    [Bibtex]
    @ARTICLE{Shore2018724,
    author={Shore, D. and Van Houtte, P. and Roose, D. and Van Bael, A.},
    title={Multiscale modelling of asymmetric rolling with an anisotropic constitutive law},
    journal={Comptes Rendus - Mecanique},
    year={2018},
    volume={346},
    number={8},
    pages={724-742},
    doi={10.1016/j.crme.2018.06.001},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048948801&doi=10.1016%2fj.crme.2018.06.001&partnerID=40&md5=9c3de86dfaedf95295332ad350840bda},
    document_type={Short Survey},
    source={Scopus},
    }
  • [DOI] T. Shiraiwa, F. Briffod, and M. Enoki, “Development of integrated framework for fatigue life prediction in welded structures,” Engineering Fracture Mechanics, vol. 198, pp. 158-170, 2018.
    [Bibtex]
    @ARTICLE{Shiraiwa2018158,
    author={Shiraiwa, T. and Briffod, F. and Enoki, M.},
    title={Development of integrated framework for fatigue life prediction in welded structures},
    journal={Engineering Fracture Mechanics},
    year={2018},
    volume={198},
    pages={158-170},
    doi={10.1016/j.engfracmech.2017.11.012},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034583663&doi=10.1016%2fj.engfracmech.2017.11.012&partnerID=40&md5=a626cadbff3d9f0bcd19615e2f4b6cfa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, and D. Raabe, “An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials,” International Journal of Plasticity, vol. 106, pp. 203-227, 2018.
    [Bibtex]
    @ARTICLE{Liu2018203,
    author={Liu, C. and Shanthraj, P. and Diehl, M. and Roters, F. and Dong, S. and Dong, J. and Ding, W. and Raabe, D.},
    title={An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials},
    journal={International Journal of Plasticity},
    year={2018},
    volume={106},
    pages={203-227},
    doi={10.1016/j.ijplas.2018.03.009},
    note={cited By 54},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046336589&doi=10.1016%2fj.ijplas.2018.03.009&partnerID=40&md5=e29d055ff86c9e3b5944d507251fe1ff},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] G. Shen, B. Hu, C. Zheng, J. Gu, and D. Li, “Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale,” Computational Materials Science, vol. 149, pp. 191-201, 2018.
    [Bibtex]
    @ARTICLE{Shen2018191,
    author={Shen, G. and Hu, B. and Zheng, C. and Gu, J. and Li, D.},
    title={Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale},
    journal={Computational Materials Science},
    year={2018},
    volume={149},
    pages={191-201},
    doi={10.1016/j.commatsci.2018.03.033},
    note={cited By 10},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044147031&doi=10.1016%2fj.commatsci.2018.03.033&partnerID=40&md5=248d8516042467458b7dd6ee7081d424},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Hüter, P. Shanthraj, E. McEniry, R. Spatschek, T. Hickel, A. Tehranchi, X. Guo, and F. Roters, “Multiscale modelling of hydrogen transport and segregation in polycrystalline steels,” Metals, vol. 8, iss. 6, 2018.
    [Bibtex]
    @ARTICLE{Hüter2018,
    author={Hüter, C. and Shanthraj, P. and McEniry, E. and Spatschek, R. and Hickel, T. and Tehranchi, A. and Guo, X. and Roters, F.},
    title={Multiscale modelling of hydrogen transport and segregation in polycrystalline steels},
    journal={Metals},
    year={2018},
    volume={8},
    number={6},
    doi={10.3390/met8060430},
    art_number={430},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048320867&doi=10.3390%2fmet8060430&partnerID=40&md5=69ddd052d0744516dcfab9c77a7e308c},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Chakkedath, T. Maiti, J. Bohlen, S. Yi, D. Letzig, P. Eisenlohr, and C. J. Boehlert, “Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 49, iss. 6, pp. 2441-2454, 2018.
    [Bibtex]
    @ARTICLE{Chakkedath20182441,
    author={Chakkedath, A. and Maiti, T. and Bohlen, J. and Yi, S. and Letzig, D. and Eisenlohr, P. and Boehlert, C.J.},
    title={Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature},
    journal={Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science},
    year={2018},
    volume={49},
    number={6},
    pages={2441-2454},
    doi={10.1007/s11661-018-4557-8},
    note={cited By 8},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044332636&doi=10.1007%2fs11661-018-4557-8&partnerID=40&md5=65947461b2fb1ca998ac79ca7e00750d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. Kitsuya, H. Ohtsubo, N. Fujita, K. Ichimiya, and K. Hase, “Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel,” Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, vol. 104, iss. 5, pp. 258-263, 2018.
    [Bibtex]
    @ARTICLE{Kitsuya2018258,
    author={Kitsuya, S. and Ohtsubo, H. and Fujita, N. and Ichimiya, K. and Hase, K.},
    title={Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel},
    journal={Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan},
    year={2018},
    volume={104},
    number={5},
    pages={258-263},
    doi={10.2355/tetsutohagane.TETSU-2017-093},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046684805&doi=10.2355%2ftetsutohagane.TETSU-2017-093&partnerID=40&md5=841e8537005cbeea713cdc29ebebc2aa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Fujita, N. Ishikawa, F. Roters, C. C. Tasan, and D. Raabe, “Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents,” International Journal of Plasticity, vol. 104, pp. 39-53, 2018.
    [Bibtex]
    @ARTICLE{Fujita201839,
    author={Fujita, N. and Ishikawa, N. and Roters, F. and Tasan, C.C. and Raabe, D.},
    title={Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents},
    journal={International Journal of Plasticity},
    year={2018},
    volume={104},
    pages={39-53},
    doi={10.1016/j.ijplas.2018.01.012},
    note={cited By 19},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042023502&doi=10.1016%2fj.ijplas.2018.01.012&partnerID=40&md5=642c5e690355ca9e02d649d5763dbd00},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Madivala, A. Schwedt, S. L. Wong, F. Roters, U. Prahl, and W. Bleck, “Temperature dependent strain hardening and fracture behavior of TWIP steel,” International Journal of Plasticity, vol. 104, pp. 80-103, 2018.
    [Bibtex]
    @ARTICLE{Madivala201880,
    author={Madivala, M. and Schwedt, A. and Wong, S.L. and Roters, F. and Prahl, U. and Bleck, W.},
    title={Temperature dependent strain hardening and fracture behavior of TWIP steel},
    journal={International Journal of Plasticity},
    year={2018},
    volume={104},
    pages={80-103},
    doi={10.1016/j.ijplas.2018.02.001},
    note={cited By 36},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042004745&doi=10.1016%2fj.ijplas.2018.02.001&partnerID=40&md5=b711dae88e3a434fddbf0868402138be},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. H. Khafagy, T. M. Hatem, and S. M. Bedair, “Impact of embedded voids on thin-films with high thermal expansion coefficients mismatch,” Applied Physics Letters, vol. 112, iss. 4, 2018.
    [Bibtex]
    @ARTICLE{Khafagy2018,
    author={Khafagy, K.H. and Hatem, T.M. and Bedair, S.M.},
    title={Impact of embedded voids on thin-films with high thermal expansion coefficients mismatch},
    journal={Applied Physics Letters},
    year={2018},
    volume={112},
    number={4},
    doi={10.1063/1.5011394},
    art_number={042109},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041189611&doi=10.1063%2f1.5011394&partnerID=40&md5=fd48fab600ca4d2097507474693daa6d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. Balusu and H. Huang, “The relationship between average grain profile heights and plastic strains in nickel polycrystals under tensile plastic loading.” 2018.
    [Bibtex]
    @CONFERENCE{Balusu2018,
    author={Balusu, K. and Huang, H.},
    title={The relationship between average grain profile heights and plastic strains in nickel polycrystals under tensile plastic loading},
    journal={ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)},
    year={2018},
    volume={9},
    doi={10.1115/IMECE2018-88197},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060393546&doi=10.1115%2fIMECE2018-88197&partnerID=40&md5=7712bf0f51d8d3d0b97be3d88bad8cb7},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] N. Grilli, K. G. F. Janssens, J. Nellessen, S. Sandlöbes, and D. Raabe, “Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method,” International Journal of Plasticity, vol. 100, pp. 104-121, 2018.
    [Bibtex]
    @ARTICLE{Grilli2018104,
    author={Grilli, N. and Janssens, K.G.F. and Nellessen, J. and Sandlöbes, S. and Raabe, D.},
    title={Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method},
    journal={International Journal of Plasticity},
    year={2018},
    volume={100},
    pages={104-121},
    doi={10.1016/j.ijplas.2017.09.015},
    note={cited By 21},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031316540&doi=10.1016%2fj.ijplas.2017.09.015&partnerID=40&md5=aa8cc34c7ed19cc4302a2f54eb015c2e},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. Zhang, J. Liu, D. Sui, Z. Cui, and M. W. Fu, “Study of microstructural grain and geometric size effects on plastic heterogeneities at grain-level by using crystal plasticity modeling with high-fidelity representative microstructures,” International Journal of Plasticity, vol. 100, pp. 69-89, 2018.
    [Bibtex]
    @ARTICLE{Zhang201869,
    author={Zhang, H. and Liu, J. and Sui, D. and Cui, Z. and Fu, M.W.},
    title={Study of microstructural grain and geometric size effects on plastic heterogeneities at grain-level by using crystal plasticity modeling with high-fidelity representative microstructures},
    journal={International Journal of Plasticity},
    year={2018},
    volume={100},
    pages={69-89},
    doi={10.1016/j.ijplas.2017.09.011},
    note={cited By 30},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031401136&doi=10.1016%2fj.ijplas.2017.09.011&partnerID=40&md5=089bff18700ee6679bff2d510189a6f4},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] S. S. Babu, “Toward process-based quality through a fundamental understanding of weld microstructural evolution,” Welding Journal, vol. 97, iss. 1, p. 1s-16s, 2018.
    [Bibtex]
    @ARTICLE{Babu20181s,
    author={Babu, S.S.},
    title={Toward process-based quality through a fundamental understanding of weld microstructural evolution},
    journal={Welding Journal},
    year={2018},
    volume={97},
    number={1},
    pages={1s-16s},
    doi={10.29391/2018.97.001},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041430492&doi=10.29391%2f2018.97.001&partnerID=40&md5=4c362b06f0d61354edd92ffe32085917},
    document_type={Article},
    source={Scopus},
    }

2017

  • [DOI] J. Jung, J. I. Yoon, J. G. Kim, M. I. Latypov, J. Y. Kim, and H. S. Kim, “Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy,” npj Computational Materials, vol. 3, iss. 1, 2017.
    [Bibtex]
    @ARTICLE{Jung2017,
    author={Jung, J. and Yoon, J.I. and Kim, J.G. and Latypov, M.I. and Kim, J.Y. and Kim, H.S.},
    title={Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy},
    journal={npj Computational Materials},
    year={2017},
    volume={3},
    number={1},
    doi={10.1038/s41524-017-0023-1},
    art_number={23},
    note={cited By 14},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041669077&doi=10.1038%2fs41524-017-0023-1&partnerID=40&md5=2ad84efe5f75494bbc5e5ad53a1524d9},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] K. Gillner and S. Münstermann, “Numerically predicted high cycle fatigue properties through representative volume elements of the microstructure,” International Journal of Fatigue, vol. 105, pp. 219-234, 2017.
    [Bibtex]
    @ARTICLE{Gillner2017219,
    author={Gillner, K. and Münstermann, S.},
    title={Numerically predicted high cycle fatigue properties through representative volume elements of the microstructure},
    journal={International Journal of Fatigue},
    year={2017},
    volume={105},
    pages={219-234},
    doi={10.1016/j.ijfatigue.2017.09.002},
    note={cited By 18},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029390094&doi=10.1016%2fj.ijfatigue.2017.09.002&partnerID=40&md5=b358a60b5e1c423b27ecd8bda79a8c8b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Diehl, “Review and outlook: Mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale,” MRS Communications, vol. 7, iss. 4, pp. 735-746, 2017.
    [Bibtex]
    @ARTICLE{Diehl2017735,
    author={Diehl, M.},
    title={Review and outlook: Mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale},
    journal={MRS Communications},
    year={2017},
    volume={7},
    number={4},
    pages={735-746},
    doi={10.1557/mrc.2017.98},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031910878&doi=10.1557%2fmrc.2017.98&partnerID=40&md5=2d1db2db55bd6dff385d0fdb7ac5dea0},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Chakraborty and P. Eisenlohr, “Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations,” European Journal of Mechanics, A/Solids, vol. 66, pp. 114-124, 2017.
    [Bibtex]
    @ARTICLE{Chakraborty2017114,
    author={Chakraborty, A. and Eisenlohr, P.},
    title={Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations},
    journal={European Journal of Mechanics, A/Solids},
    year={2017},
    volume={66},
    pages={114-124},
    doi={10.1016/j.euromechsol.2017.06.012},
    note={cited By 17},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021823581&doi=10.1016%2fj.euromechsol.2017.06.012&partnerID=40&md5=a033fa0259d75c4a53a0248229e01fc4},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. -F. Zhu, S. -H. Tu, H. -S. Ma, and X. -W. Zhang, “A 3D Voronoi and subdivision model for calibration of rock properties,” Modelling and Simulation in Materials Science and Engineering, vol. 25, iss. 8, 2017.
    [Bibtex]
    @ARTICLE{Zhu2017,
    author={Zhu, D.-F. and Tu, S.-H. and Ma, H.-S. and Zhang, X.-W.},
    title={A 3D Voronoi and subdivision model for calibration of rock properties},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2017},
    volume={25},
    number={8},
    doi={10.1088/1361-651X/aa8f19},
    art_number={085005},
    note={cited By 9},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034599779&doi=10.1088%2f1361-651X%2faa8f19&partnerID=40&md5=60e1f009c9364f3706b42c4ade56497f},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Isaenkova, Y. Perlovich, D. Zhuk, and O. Krymskaya, “Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element.” 2017.
    [Bibtex]
    @CONFERENCE{Isaenkova2017,
    author={Isaenkova, M. and Perlovich, Y. and Zhuk, D. and Krymskaya, O.},
    title={Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element},
    journal={AIP Conference Proceedings},
    year={2017},
    volume={1896},
    doi={10.1063/1.5008198},
    art_number={160023},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037674660&doi=10.1063%2f1.5008198&partnerID=40&md5=bb6f8058b22cb139ab62534db28f183f},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] A. Irastorza-Landa, N. Grilli, and H. Van Swygenhoven, “Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu,” Journal of the Mechanics and Physics of Solids, vol. 104, pp. 157-171, 2017.
    [Bibtex]
    @ARTICLE{Irastorza-Landa2017157,
    author={Irastorza-Landa, A. and Grilli, N. and Van Swygenhoven, H.},
    title={Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2017},
    volume={104},
    pages={157-171},
    doi={10.1016/j.jmps.2017.04.010},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018239758&doi=10.1016%2fj.jmps.2017.04.010&partnerID=40&md5=587178edd8dde35a62f8af61d5f2601d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, and D. Raabe, “Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure,” Physical Mesomechanics, vol. 20, iss. 3, pp. 311-323, 2017.
    [Bibtex]
    @ARTICLE{Diehl2017311,
    author={Diehl, M. and An, D. and Shanthraj, P. and Zaefferer, S. and Roters, F. and Raabe, D.},
    title={Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure},
    journal={Physical Mesomechanics},
    year={2017},
    volume={20},
    number={3},
    pages={311-323},
    doi={10.1134/S1029959917030079},
    note={cited By 25},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029607682&doi=10.1134%2fS1029959917030079&partnerID=40&md5=4da7ef71d32ab05d7da5191a39ff018d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Irastorza-Landa, N. Grilli, and H. Van Swygenhoven, “Effect of pre-existing immobile dislocations on the evolution of geometrically necessary dislocations during fatigue,” Modelling and Simulation in Materials Science and Engineering, vol. 25, iss. 5, 2017.
    [Bibtex]
    @ARTICLE{Irastorza-Landa2017,
    author={Irastorza-Landa, A. and Grilli, N. and Van Swygenhoven, H.},
    title={Effect of pre-existing immobile dislocations on the evolution of geometrically necessary dislocations during fatigue},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2017},
    volume={25},
    number={5},
    doi={10.1088/1361-651X/aa6e24},
    art_number={055010},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020914763&doi=10.1088%2f1361-651X%2faa6e24&partnerID=40&md5=c87433d7cbd78a4bc8bb2cf805747af6},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Briffod, T. Shiraiwa, and M. Enoki, “Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect,” Materials Science and Engineering A, vol. 695, pp. 165-177, 2017.
    [Bibtex]
    @ARTICLE{Briffod2017165,
    author={Briffod, F. and Shiraiwa, T. and Enoki, M.},
    title={Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect},
    journal={Materials Science and Engineering A},
    year={2017},
    volume={695},
    pages={165-177},
    doi={10.1016/j.msea.2017.04.030},
    note={cited By 28},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017526982&doi=10.1016%2fj.msea.2017.04.030&partnerID=40&md5=0f93658860112c39f4d964af869b0faa},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters, “A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations,” Integrating Materials and Manufacturing Innovation, vol. 6, iss. 1, pp. 83-91, 2017.
    [Bibtex]
    @ARTICLE{Diehl201783,
    author={Diehl, M. and Eisenlohr, P. and Zhang, C. and Nastola, J. and Shanthraj, P. and Roters, F.},
    title={A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations},
    journal={Integrating Materials and Manufacturing Innovation},
    year={2017},
    volume={6},
    number={1},
    pages={83-91},
    doi={10.1007/s40192-017-0084-5},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039989294&doi=10.1007%2fs40192-017-0084-5&partnerID=40&md5=066200ad7591092d21ad824b840af971},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] P. Jagtap and P. Kumar, “Macro and micro-texture study for understanding whisker growth in Sn coatings.” 2017, pp. 165-170.
    [Bibtex]
    @CONFERENCE{Jagtap2017165,
    author={Jagtap, P. and Kumar, P.},
    title={Macro and micro-texture study for understanding whisker growth in Sn coatings},
    journal={Proceedings of the 2016 IEEE 18th Electronics Packaging Technology Conference, EPTC 2016},
    year={2017},
    pages={165-170},
    doi={10.1109/EPTC.2016.7861464},
    art_number={7861464},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016131978&doi=10.1109%2fEPTC.2016.7861464&partnerID=40&md5=bfce3b7016ddd1cb39e65e4c6198c2ee},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] Z. Boufaida, J. Boisse, S. André, and L. Farge, “Mesoscopic strain field analysis in a woven composite using a spectral solver and 3D-DIC measurements,” Composite Structures, vol. 160, pp. 604-612, 2017.
    [Bibtex]
    @ARTICLE{Boufaida2017604,
    author={Boufaida, Z. and Boisse, J. and André, S. and Farge, L.},
    title={Mesoscopic strain field analysis in a woven composite using a spectral solver and 3D-DIC measurements},
    journal={Composite Structures},
    year={2017},
    volume={160},
    pages={604-612},
    doi={10.1016/j.compstruct.2016.10.030},
    note={cited By 13},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995563184&doi=10.1016%2fj.compstruct.2016.10.030&partnerID=40&md5=7b34730c8b31e116309f7a8e87e8bc45},
    document_type={Article},
    source={Scopus},
    }
  • F. Briffod, T. Shiraiwa, and M. Enoki, “Microstructure-sensitive simulations of fatigue damage in dual-phase steel specimens including elliptic defect.” 2017, pp. 63-64.
    [Bibtex]
    @CONFERENCE{Briffod201763,
    author={Briffod, F. and Shiraiwa, T. and Enoki, M.},
    title={Microstructure-sensitive simulations of fatigue damage in dual-phase steel specimens including elliptic defect},
    journal={ICF 2017 - 14th International Conference on Fracture},
    year={2017},
    volume={2},
    pages={63-64},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066013827&partnerID=40&md5=7472cae60a8aa6f2affce80723501671},
    document_type={Conference Paper},
    source={Scopus},
    }
  • S. Papanikolaou, J. Thibault, C. Woodward, P. Shanthraj, and F. Roters, “Disorder-induced brittle to quasi-brittle crack initiation transition in notched crystals.” 2017, pp. 1032-1034.
    [Bibtex]
    @CONFERENCE{Papanikolaou20171032,
    author={Papanikolaou, S. and Thibault, J. and Woodward, C. and Shanthraj, P. and Roters, F.},
    title={Disorder-induced brittle to quasi-brittle crack initiation transition in notched crystals},
    journal={ICF 2017 - 14th International Conference on Fracture},
    year={2017},
    volume={2},
    pages={1032-1034},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066043608&partnerID=40&md5=03dcc4561dd8f296112106454b29b225},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] U. Prahl, M. Lin, M. Weikamp, C. Hueter, D. Schicchi, M. Hunkel, and R. Spatschek, “Multiscale, coupled chemo-mechanical modeling of bainitic transformation during press hardening,” Minerals, Metals and Materials Series, vol. Part F4, pp. 335-343, 2017.
    [Bibtex]
    @ARTICLE{Prahl2017335,
    author={Prahl, U. and Lin, M. and Weikamp, M. and Hueter, C. and Schicchi, D. and Hunkel, M. and Spatschek, R.},
    title={Multiscale, coupled chemo-mechanical modeling of bainitic transformation during press hardening},
    journal={Minerals, Metals and Materials Series},
    year={2017},
    volume={Part F4},
    pages={335-343},
    doi={10.1007/978-3-319-57864-4_31},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042411358&doi=10.1007%2f978-3-319-57864-4_31&partnerID=40&md5=6991d20101f6f54c1983322865ac9483},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] K. Balusu and H. Huang, “A cpfem investigation of the effect of grain orientation on the surface profile during tensile plastic deformation of FCC polycrystals.” 2017.
    [Bibtex]
    @CONFERENCE{Balusu2017,
    author={Balusu, K. and Huang, H.},
    title={A cpfem investigation of the effect of grain orientation on the surface profile during tensile plastic deformation of FCC polycrystals},
    journal={ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)},
    year={2017},
    volume={9},
    doi={10.1115/IMECE2017-71763},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041113984&doi=10.1115%2fIMECE2017-71763&partnerID=40&md5=5afcea406eb91ecb43be0dbd8a74e865},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] P. Kumar, I. Dutta, Z. Huang, and P. Conway, “Microstructural and reliability issues of TSV,” Springer Series in Advanced Microelectronics, vol. 57, pp. 71-99, 2017.
    [Bibtex]
    @ARTICLE{Kumar201771,
    author={Kumar, P. and Dutta, I. and Huang, Z. and Conway, P.},
    title={Microstructural and reliability issues of TSV},
    journal={Springer Series in Advanced Microelectronics},
    year={2017},
    volume={57},
    pages={71-99},
    doi={10.1007/978-3-319-44586-1_4},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010903646&doi=10.1007%2f978-3-319-44586-1_4&partnerID=40&md5=6f3d26d9990223935f9ee9951fa3a5bb},
    document_type={Book Chapter},
    source={Scopus},
    }
  • [DOI] P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar, “Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction,” Acta Materialia, vol. 134, pp. 346-359, 2017.
    [Bibtex]
    @Article{Jagtap2017,
    author = {Piyush Jagtap and Aritra Chakraborty and Philip Eisenlohr and Praveen Kumar},
    journal = {Acta Materialia},
    title = {Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction},
    year = {2017},
    issn = {1359-6454},
    pages = {346 - 359},
    volume = {134},
    abstract = {Here, we attempt to understand the age-old question of “where do whiskers in Sn coatings grow?” by performing grain orientation mapping in conjunction with a simple analysis of the stress field in the vicinity of a whisker grain. Electron back-scatter diffraction (EBSD) was used for orientation mapping of Sn grains in a 4 μm thick Sn coating deposited on brass. It was observed that whiskers consistently grew from low-index grains with (100) or near-(100) orientations that were surrounded by grains with similar orientations, which were then partially surrounded by grains with high-index planes, such as (211), (321) and (420). Strong elastic anisotropy and overall a high fraction of high-angle grain boundaries were also consistently observed in the vicinity of whiskers. In addition, a full-field three-dimensional crystal elasticity simulations were performed using the EBSD orientation maps to analyze local stress variations in the vicinity of the whisker grain. These simulations indicate the presence of a high compressive hydrostatic stress around the whisker grain, which could then possibly create conducive conditions for whisker growth observed experimentally.},
    doi = {https://doi.org/10.1016/j.actamat.2017.05.063},
    keywords = {EBSD, Micro-texture mapping, Stress field mapping, Sn whisker, Whisker location},
    url = {http://www.sciencedirect.com/science/article/pii/S1359645417304524},
    }
  • [DOI] M. Stricker, “Die Übertragung von mikrostrukturellen Eigenschaften aus der diskreten Versetzungsdynamik in Kontinuumsbeschreibungen,” PhD Thesis, 2017.
    [Bibtex]
    @PhdThesis{Stricker2017,
    author = {Stricker, Markus},
    school = {Karlsruher Institut für Technologie (KIT)},
    title = {Die Übertragung von mikrostrukturellen Eigenschaften aus der diskreten Versetzungsdynamik in Kontinuumsbeschreibungen},
    year = {2017},
    doi = {10.5445/IR/1000067987},
    keywords = {Versetzungsdynamik, Discrete Dislocation Dynamics, Plastizität, plasticity, Versetzungsmultiplikation, dislocation multiplication, gleitfähige Reaktion, glissile junction, Korngrenze, grain boundary},
    language = {german},
    pagetotal = {129},
    publisher = {{KIT, Karlsruhe}},
    }
  • [DOI] M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, and D. Raabe, “Coupled Crystal Plasticity-Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation,” JOM, vol. 69, iss. 5, p. 872–878, 2017.
    [Bibtex]
    @Article{Diehl2017,
    author = {Diehl, Martin and Wicke, Marcel and Shanthraj, Pratheek and Roters, Franz and Brueckner-Foit, Angelika and Raabe, Dierk},
    journal = {JOM},
    title = {Coupled Crystal Plasticity-Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation},
    year = {2017},
    issn = {1543-1851},
    number = {5},
    pages = {872--878},
    volume = {69},
    abstract = {Various mechanisms such as anisotropic plastic flow, damage nucleation, and crack propagation govern the overall mechanical response of structural materials. Understanding how these mechanisms interact, i.e. if they amplify mutually or compete with each other, is an essential prerequisite for the design of improved alloys. This study shows--by using the free and open source software DAMASK (the Düsseldorf Advanced Material Simulation Kit)--how the coupling of crystal plasticity and phase field fracture methods can increase the understanding of the complex interplay between crystallographic orientation and the geometry of a void. To this end, crack initiation and propagation around an experimentally obtained pore with complex shape is investigated and compared to the situation of a simplified spherical void. Three different crystallographic orientations of the aluminum matrix hosting the defects are considered. It is shown that crack initiation and propagation depend in a non-trivial way on crystallographic orientation and its associated plastic behavior as well as on the shape of the pore.},
    doi = {10.1007/s11837-017-2308-8},
    refid = {Diehl2017},
    url = {https://doi.org/10.1007/s11837-017-2308-8},
    }
  • [DOI] M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe, “Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach,” JOM, vol. 69, iss. 5, p. 848–855, 2017.
    [Bibtex]
    @Article{Diehl2017a,
    author = {Diehl, Martin and Groeber, Michael and Haase, Christian and Molodov, Dmitri A. and Roters, Franz and Raabe, Dierk},
    journal = {JOM},
    title = {Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach},
    year = {2017},
    issn = {1543-1851},
    number = {5},
    pages = {848--855},
    volume = {69},
    abstract = {Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems--in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship--give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.},
    doi = {10.1007/s11837-017-2303-0},
    refid = {Diehl2017},
    url = {https://doi.org/10.1007/s11837-017-2303-0},
    }

2016

  • [DOI] S. L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe, “A crystal plasticity model for twinning- and transformation-induced plasticity,” Acta Materialia, vol. 118, pp. 140-151, 2016.
    [Bibtex]
    @ARTICLE{Wong2016140,
    author={Wong, S.L. and Madivala, M. and Prahl, U. and Roters, F. and Raabe, D.},
    title={A crystal plasticity model for twinning- and transformation-induced plasticity},
    journal={Acta Materialia},
    year={2016},
    volume={118},
    pages={140-151},
    doi={10.1016/j.actamat.2016.07.032},
    note={cited By 79},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979517105&doi=10.1016%2fj.actamat.2016.07.032&partnerID=40&md5=678a9ec41c188b8953846987ba31547d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] E. Werner, R. Wesenjak, A. Fillafer, F. Meier, and C. Krempaszky, “Microstructure-based modelling of multiphase materials and complex structures,” Continuum Mechanics and Thermodynamics, vol. 28, iss. 5, pp. 1325-1346, 2016.
    [Bibtex]
    @ARTICLE{Werner20161325,
    author={Werner, E. and Wesenjak, R. and Fillafer, A. and Meier, F. and Krempaszky, C.},
    title={Microstructure-based modelling of multiphase materials and complex structures},
    journal={Continuum Mechanics and Thermodynamics},
    year={2016},
    volume={28},
    number={5},
    pages={1325-1346},
    doi={10.1007/s00161-015-0477-7},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944630429&doi=10.1007%2fs00161-015-0477-7&partnerID=40&md5=b998c86dca8c0e3b823412a36f795062},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] G. Nayyeri, W. J. Poole, C. W. Sinclair, S. Zaefferer, P. J. Konijnenberg, and C. Zambaldi, “An instrumented spherical indentation study on high purity magnesium loaded nearly parallel to the c-axis,” Materials Science and Engineering A, vol. 670, pp. 132-145, 2016.
    [Bibtex]
    @ARTICLE{Nayyeri2016132,
    author={Nayyeri, G. and Poole, W.J. and Sinclair, C.W. and Zaefferer, S. and Konijnenberg, P.J. and Zambaldi, C.},
    title={An instrumented spherical indentation study on high purity magnesium loaded nearly parallel to the c-axis},
    journal={Materials Science and Engineering A},
    year={2016},
    volume={670},
    pages={132-145},
    doi={10.1016/j.msea.2016.05.112},
    note={cited By 9},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84974555468&doi=10.1016%2fj.msea.2016.05.112&partnerID=40&md5=b3c26409bd2c1fb2eb2555c607d72645},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] X. Wu, D. Ma, P. Eisenlohr, D. Raabe, and H. -O. Fabritius, “From insect scales to sensor design: Modelling the mechanochromic properties of bicontinuous cubic structures,” Bioinspiration and Biomimetics, vol. 11, iss. 4, 2016.
    [Bibtex]
    @ARTICLE{Wu2016,
    author={Wu, X. and Ma, D. and Eisenlohr, P. and Raabe, D. and Fabritius, H.-O.},
    title={From insect scales to sensor design: Modelling the mechanochromic properties of bicontinuous cubic structures},
    journal={Bioinspiration and Biomimetics},
    year={2016},
    volume={11},
    number={4},
    doi={10.1088/1748-3190/11/4/045001},
    art_number={045001},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984684929&doi=10.1088%2f1748-3190%2f11%2f4%2f045001&partnerID=40&md5=8918c4624532ff643ac50f215f29bf04},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Jia, D. Raabe, and X. Zhao, “Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites,” Acta Materialia, vol. 111, pp. 116-128, 2016.
    [Bibtex]
    @ARTICLE{Jia2016116,
    author={Jia, N. and Raabe, D. and Zhao, X.},
    title={Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites},
    journal={Acta Materialia},
    year={2016},
    volume={111},
    pages={116-128},
    doi={10.1016/j.actamat.2016.03.055},
    note={cited By 6},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961875056&doi=10.1016%2fj.actamat.2016.03.055&partnerID=40&md5=18170a35a0a3095dab98438b1dfa7e72},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. Zhang, M. Diehl, F. Roters, and D. Raabe, “A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations,” International Journal of Plasticity, vol. 80, pp. 111-138, 2016.
    [Bibtex]
    @ARTICLE{Zhang2016111,
    author={Zhang, H. and Diehl, M. and Roters, F. and Raabe, D.},
    title={A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations},
    journal={International Journal of Plasticity},
    year={2016},
    volume={80},
    pages={111-138},
    doi={10.1016/j.ijplas.2016.01.002},
    note={cited By 70},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959318095&doi=10.1016%2fj.ijplas.2016.01.002&partnerID=40&md5=ecd595ee4bc587d6341d7325374c8709},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Raabe, F. Roters, J. Neugebauer, I. Gutierrez-Urrutia, T. Hickel, W. Bleck, J. M. Schneider, J. E. Wittig, and J. Mayer, “Ab initio-guided design of twinning-induced plasticity steels,” MRS Bulletin, vol. 41, iss. 4, pp. 320-325, 2016.
    [Bibtex]
    @ARTICLE{Raabe2016320,
    author={Raabe, D. and Roters, F. and Neugebauer, J. and Gutierrez-Urrutia, I. and Hickel, T. and Bleck, W. and Schneider, J.M. and Wittig, J.E. and Mayer, J.},
    title={Ab initio-guided design of twinning-induced plasticity steels},
    journal={MRS Bulletin},
    year={2016},
    volume={41},
    number={4},
    pages={320-325},
    doi={10.1557/mrs.2016.63},
    note={cited By 20},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84967335398&doi=10.1557%2fmrs.2016.63&partnerID=40&md5=8bc49b0d09e9f2eb39979ac3fc6dccc7},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Cereceda, M. Diehl, F. Roters, D. Raabe, J. M. Perlado, and J. Marian, “Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations,” International Journal of Plasticity, vol. 78, pp. 242-265, 2016.
    [Bibtex]
    @ARTICLE{Cereceda2016242,
    author={Cereceda, D. and Diehl, M. and Roters, F. and Raabe, D. and Perlado, J.M. and Marian, J.},
    title={Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations},
    journal={International Journal of Plasticity},
    year={2016},
    volume={78},
    pages={242-265},
    doi={10.1016/j.ijplas.2015.09.002},
    note={cited By 58},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956809073&doi=10.1016%2fj.ijplas.2015.09.002&partnerID=40&md5=42011e3d12a10b3e74ef58e99b2c8f36},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Ma, P. Eisenlohr, E. Epler, C. A. Volkert, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe, “Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression,” Acta Materialia, vol. 103, pp. 796-808, 2016.
    [Bibtex]
    @ARTICLE{Ma2016796,
    author={Ma, D. and Eisenlohr, P. and Epler, E. and Volkert, C.A. and Shanthraj, P. and Diehl, M. and Roters, F. and Raabe, D.},
    title={Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression},
    journal={Acta Materialia},
    year={2016},
    volume={103},
    pages={796-808},
    doi={10.1016/j.actamat.2015.11.016},
    note={cited By 7},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948127972&doi=10.1016%2fj.actamat.2015.11.016&partnerID=40&md5=e062497bad632e1a2f3214dc1996ef60},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Ebrahimi and T. Hochrainer, “Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam.” 2016, pp. 1791-1796.
    [Bibtex]
    @CONFERENCE{Ebrahimi20161791,
    author={Ebrahimi, A. and Hochrainer, T.},
    title={Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam},
    journal={MRS Advances},
    year={2016},
    volume={1},
    number={24},
    pages={1791-1796},
    doi={10.1557/adv.2016.75},
    note={cited By 4},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017481082&doi=10.1557%2fadv.2016.75&partnerID=40&md5=2fd8f9e922590eb90b2c84edb2684c29},
    document_type={Conference Paper},
    source={Scopus},
    }
  • M. Lin and U. Prahl, “A parallelized model for coupled phase field and crystal plasticity simulation,” Computer Methods in Materials Science, vol. 16, iss. 3, pp. 156-162, 2016.
    [Bibtex]
    @ARTICLE{Lin2016156,
    author={Lin, M. and Prahl, U.},
    title={A parallelized model for coupled phase field and crystal plasticity simulation},
    journal={Computer Methods in Materials Science},
    year={2016},
    volume={16},
    number={3},
    pages={156-162},
    note={cited By 5},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026316699&partnerID=40&md5=cbbb60ef2f8939953a19e81eb794082d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] J. E. Bishop and H. Lim, “Continuum approximations,” Springer Series in Materials Science, vol. 245, pp. 89-129, 2016.
    [Bibtex]
    @ARTICLE{Bishop201689,
    author={Bishop, J.E. and Lim, H.},
    title={Continuum approximations},
    journal={Springer Series in Materials Science},
    year={2016},
    volume={245},
    pages={89-129},
    doi={10.1007/978-3-319-33480-6_3},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84985945404&doi=10.1007%2f978-3-319-33480-6_3&partnerID=40&md5=f187b466fe503a4a776de8377134464a},
    document_type={Book Chapter},
    source={Scopus},
    }
  • [DOI] Y. Su, C. Zambaldi, D. Mercier, P. Eisenlohr, T. R. Bieler, and M. A. Crimp, “Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling,” International Journal of Plasticity, vol. 86, pp. 170-186, 2016.
    [Bibtex]
    @Article{Su2016,
    author = {Y. Su and C. Zambaldi and D. Mercier and P. Eisenlohr and T.R. Bieler and M.A. Crimp},
    journal = {International Journal of Plasticity},
    title = {Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling},
    year = {2016},
    issn = {0749-6419},
    pages = {170 - 186},
    volume = {86},
    abstract = {The influence of grain boundaries on plastic deformation was studied by carrying out nanoindentation near grain boundaries (GBs). Surface topographies of indentations near grain boundaries were characterized using atomic force microscopy (AFM) and compared to corresponding single crystal indent topographies collected from indentations in grain interiors. Comparison of the single crystal indents to indents adjacent to low-angle boundaries shows that these boundaries have limited effect on the size and shape of the indent topography. Higher angle boundaries result in a decrease in the pile-up topography observed in the receiving grain, and in some cases increases in the topographic height in the indented grain, indicating deformation transfer across these boundaries is more difficult. A crystal plasticity finite element (CPFE) model of the indentation geometry was built to simulate both the single crystal and the near grain boundary indentation (bi-crystal indentation) deformation process. The accuracy of the model is evaluated by comparing the point-wise volumetric differences between simulated and experimentally measured topographies. Good agreement, in both single and bi-crystal cases, suggests that the crystal plasticity kinematics plays a dominant role in single crystal indentation deformation, and is also essential to bi-crystal indentation. Despite the good agreement, some differences between experimental and simulated topographies were observed. These discrepancies have been rationalized in terms of reverse plasticity and the inability of the model to capture the full resistance of the boundary to slip. This is discussed in terms of dislocation nucleation versus glide in the model and in the physics of the slip transfer process.},
    doi = {https://doi.org/10.1016/j.ijplas.2016.08.007},
    keywords = {A. Grain boundary, Nanoindentation, A. Dislocations, B. Crystal plasticity, A. Ductility},
    url = {http://www.sciencedirect.com/science/article/pii/S0749641916301498},
    }
  • [DOI] M. Diehl, P. Shanthraj, P. Eisenlohr, and F. Roters, “Neighborhood influences on stress and strain partitioning in dual-phase microstructures,” Meccanica, vol. 51, iss. 2, p. 429–441, 2016.
    [Bibtex]
    @Article{Diehl2016,
    author = {Diehl, Martin and Shanthraj, Pratheek and Eisenlohr, Philip and Roters, Franz},
    journal = {Meccanica},
    title = {Neighborhood influences on stress and strain partitioning in dual-phase microstructures},
    year = {2016},
    issn = {1572-9648},
    number = {2},
    pages = {429--441},
    volume = {51},
    abstract = {The mechanical response of multiphase metallic materials is governed by the strain and stress partitioning behavior among their phases, crystals, and subgrains. Despite knowledge about the existence of these complex and long-ranging interactions, the experimental characterization of such materials is often limited to surface observations of microstructure evolution and strain partitioning, i.e. ignoring the influence of the underlying features. Hence, for the interpretation of the observed surface behavior it is imperative to understand how it might be influenced by the subsurface microstructure. In the present study, we therefore systematically change the subsurface microstructure of synthetic dual-phase polycrystals and investigate the altered response of a 2D region of interest. The series of high-resolution crystal plasticity simulations are conducted with a fast and efficient spectral-based iterative scheme for calculating the mechanical response of complex crystalline materials. To overcome the slow convergence of the conventional spectral-based solver when dealing with heterogeneous materials of large contrast in stiffness (or strength), direct and mixed variational conditions for mechanical equilibrium and strain compatibility have been formulated such that they can be combined with a general class of non-linear solution methods. The different solution techniques have been implemented into DAMASK, the Düsseldorf Advanced Material Simulation Kit, and the ones showing the best performance are used in this study. The results show that the subsurface microstructure has a dominant influence on the observed stress and strain partitioning. Additionally, it can be seen that the zone of influence increases with increasing heterogeneity of the microstructure.},
    doi = {10.1007/s11012-015-0281-2},
    refid = {Diehl2016},
    url = {https://doi.org/10.1007/s11012-015-0281-2},
    }
  • M. Diehl, “High-Resolution Crystal Plasticity Simulations,” PhD Thesis, Apprimus Wissenschaftsverlag, 2016.
    [Bibtex]
    @PhdThesis{,
    author = {Diehl, M.},
    school = {RWTH Aachen},
    title = {High-Resolution Crystal Plasticity Simulations},
    year = {2016},
    address = {Apprimus Wissenschaftsverlag},
    }

2015

  • [DOI] T. R. Bieler, D. Kang, D. C. Baars, S. Chandrasekaran, A. Mapar, G. Ciovati, N. T. Wright, F. Pourboghrat, J. E. Murphy, C. C. Compton, and G. R. Myneni, “Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium.” 2015.
    [Bibtex]
    @CONFERENCE{Bieler2015,
    author={Bieler, T.R. and Kang, D. and Baars, D.C. and Chandrasekaran, S. and Mapar, A. and Ciovati, G. and Wright, N.T. and Pourboghrat, F. and Murphy, J.E. and Compton, C.C. and Myneni, G.R.},
    title={Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium},
    journal={AIP Conference Proceedings},
    year={2015},
    volume={1687},
    doi={10.1063/1.4935316},
    art_number={020002},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984571856&doi=10.1063%2f1.4935316&partnerID=40&md5=a7daca037875c04b6255a1d97d18d206},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] J. Gawad, D. Banabic, A. Van Bael, D. S. Comsa, M. Gologanu, P. Eyckens, P. Van Houtte, and D. Roose, “An evolving plane stress yield criterion based on crystal plasticity virtual experiments,” International Journal of Plasticity, vol. 75, pp. 141-169, 2015.
    [Bibtex]
    @ARTICLE{Gawad2015141,
    author={Gawad, J. and Banabic, D. and Van Bael, A. and Comsa, D.S. and Gologanu, M. and Eyckens, P. and Van Houtte, P. and Roose, D.},
    title={An evolving plane stress yield criterion based on crystal plasticity virtual experiments},
    journal={International Journal of Plasticity},
    year={2015},
    volume={75},
    pages={141-169},
    doi={10.1016/j.ijplas.2015.02.011},
    note={cited By 36},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928178847&doi=10.1016%2fj.ijplas.2015.02.011&partnerID=40&md5=8d6c2136ce1b4310f36bd080f8cd86ba},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] B. Berisha, C. Raemy, C. Becker, M. Gorji, and P. Hora, “Multiscale modeling of failure initiation in a ferritic-pearlitic steel,” Acta Materialia, vol. 100, pp. 191-201, 2015.
    [Bibtex]
    @ARTICLE{Berisha2015191,
    author={Berisha, B. and Raemy, C. and Becker, C. and Gorji, M. and Hora, P.},
    title={Multiscale modeling of failure initiation in a ferritic-pearlitic steel},
    journal={Acta Materialia},
    year={2015},
    volume={100},
    pages={191-201},
    doi={10.1016/j.actamat.2015.08.035},
    note={cited By 21},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941566610&doi=10.1016%2fj.actamat.2015.08.035&partnerID=40&md5=eb8f2f9b647781fde2a15a8576f9ae3f},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] N. Grilli, K. G. F. Janssens, and H. Van Swygenhoven, “Crystal plasticity finite element modelling of low cycle fatigue in fcc metals,” Journal of the Mechanics and Physics of Solids, vol. 84, pp. 424-435, 2015.
    [Bibtex]
    @ARTICLE{Grilli2015424,
    author={Grilli, N. and Janssens, K.G.F. and Van Swygenhoven, H.},
    title={Crystal plasticity finite element modelling of low cycle fatigue in fcc metals},
    journal={Journal of the Mechanics and Physics of Solids},
    year={2015},
    volume={84},
    pages={424-435},
    doi={10.1016/j.jmps.2015.08.007},
    art_number={2703},
    note={cited By 15},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941111378&doi=10.1016%2fj.jmps.2015.08.007&partnerID=40&md5=4e4eaabdd1df2493dd0ae5b86ff0af6b},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] Y. F. Shen, N. Jia, Y. D. Wang, X. Sun, L. Zuo, and D. Raabe, “Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation,” Acta Materialia, vol. 97, pp. 305-315, 2015.
    [Bibtex]
    @ARTICLE{Shen2015305,
    author={Shen, Y.F. and Jia, N. and Wang, Y.D. and Sun, X. and Zuo, L. and Raabe, D.},
    title={Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation},
    journal={Acta Materialia},
    year={2015},
    volume={97},
    pages={305-315},
    doi={10.1016/j.actamat.2015.06.053},
    art_number={12238},
    note={cited By 47},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84937562271&doi=10.1016%2fj.actamat.2015.06.053&partnerID=40&md5=8796c13425feca941eb38af1a3ba9890},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annual Review of Materials Research, vol. 45, pp. 391-431, 2015.
    [Bibtex]
    @ARTICLE{Tasan2015391,
    author={Tasan, C.C. and Diehl, M. and Yan, D. and Bechtold, M. and Roters, F. and Schemmann, L. and Zheng, C. and Peranio, N. and Ponge, D. and Koyama, M. and Tsuzaki, K. and Raabe, D.},
    title={An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design},
    journal={Annual Review of Materials Research},
    year={2015},
    volume={45},
    pages={391-431},
    doi={10.1146/annurev-matsci-070214-021103},
    note={cited By 229},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941587952&doi=10.1146%2fannurev-matsci-070214-021103&partnerID=40&md5=4e1f89e0f500d020f55ce31c20cb4425},
    document_type={Review},
    source={Scopus},
    }
  • [DOI] D. D. Tjahjanto, P. Eisenlohr, and F. Roters, “Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme,” Modelling and Simulation in Materials Science and Engineering, vol. 23, iss. 4, 2015.
    [Bibtex]
    @ARTICLE{Tjahjanto2015,
    author={Tjahjanto, D.D. and Eisenlohr, P. and Roters, F.},
    title={Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme},
    journal={Modelling and Simulation in Materials Science and Engineering},
    year={2015},
    volume={23},
    number={4},
    doi={10.1088/0965-0393/23/4/045005},
    art_number={045005},
    note={cited By 11},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928999864&doi=10.1088%2f0965-0393%2f23%2f4%2f045005&partnerID=40&md5=9c6500f2f56d7c93f3f7f00f1145a97d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Zambaldi, C. Zehnder, and D. Raabe, “Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation,” Acta Materialia, vol. 91, pp. 267-288, 2015.
    [Bibtex]
    @ARTICLE{Zambaldi2015267,
    author={Zambaldi, C. and Zehnder, C. and Raabe, D.},
    title={Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation},
    journal={Acta Materialia},
    year={2015},
    volume={91},
    pages={267-288},
    doi={10.1016/j.actamat.2015.01.046},
    note={cited By 51},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961291551&doi=10.1016%2fj.actamat.2015.01.046&partnerID=40&md5=b5cf8ac23b608a1da67a9cbf946cc80d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] H. Geng, C. Ding, M. Lu, X. Zhou, X. Liu, Y. Fang, and J. Wang, “Numerical simulation of mechanical properties of nickel base casting superalloy with the mesoscale finite element method,” Materials Research Innovations, vol. 19, p. S5794-S5798, 2015.
    [Bibtex]
    @ARTICLE{Geng2015S5794,
    author={Geng, H. and Ding, C. and Lu, M. and Zhou, X. and Liu, X. and Fang, Y. and Wang, J.},
    title={Numerical simulation of mechanical properties of nickel base casting superalloy with the mesoscale finite element method},
    journal={Materials Research Innovations},
    year={2015},
    volume={19},
    pages={S5794-S5798},
    doi={10.1179/1432891714Z.0000000001195},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941353987&doi=10.1179%2f1432891714Z.0000000001195&partnerID=40&md5=58ed934b4e49e3bddef58865af46cfff},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] Y. Akinori, “Prediction of 3D microstructure and plastic deformation behavior in dual-phase steel using multi-phase-field and crystal plasticity FFT methods,” Key Engineering Materials, vol. 651-653, pp. 570-574, 2015.
    [Bibtex]
    @ARTICLE{Akinori2015570,
    author={Akinori, Y.},
    title={Prediction of 3D microstructure and plastic deformation behavior in dual-phase steel using multi-phase-field and crystal plasticity FFT methods},
    journal={Key Engineering Materials},
    year={2015},
    volume={651-653},
    pages={570-574},
    doi={10.4028/www.scientific.net/KEM.651-653.570},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944223215&doi=10.4028%2fwww.scientific.net%2fKEM.651-653.570&partnerID=40&md5=6a0d8a582040492ef1194ae5d8430bff},
    document_type={Conference Paper},
    source={Scopus},
    }
  • A. Yamanaka, “3D modeling of ferrite transformation in deformed-austenite using multi-phase-field method and crystal plasticity fast Fourier transformation method.” 2015, pp. 857-864.
    [Bibtex]
    @CONFERENCE{Yamanaka2015857,
    author={Yamanaka, A.},
    title={3D modeling of ferrite transformation in deformed-austenite using multi-phase-field method and crystal plasticity fast Fourier transformation method},
    journal={PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015},
    year={2015},
    pages={857-864},
    note={cited By 0},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962666685&partnerID=40&md5=571a59f1d99a503dc4fff94f47d04111},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] A. Yamanaka, “Prediction of deformed-and recrystallized microstructures in metallic materials by crystal plasticity analysis and multi-phase-field method,” Keikinzoku/Journal of Japan Institute of Light Metals, vol. 65, iss. 11, pp. 542-548, 2015.
    [Bibtex]
    @ARTICLE{Yamanaka2015542,
    author={Yamanaka, A.},
    title={Prediction of deformed-and recrystallized microstructures in metallic materials by crystal plasticity analysis and multi-phase-field method},
    journal={Keikinzoku/Journal of Japan Institute of Light Metals},
    year={2015},
    volume={65},
    number={11},
    pages={542-548},
    doi={10.2464/jilm.65.542},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981262588&doi=10.2464%2fjilm.65.542&partnerID=40&md5=163dac8c857131b016b87d76e4fa1d63},
    document_type={Article},
    source={Scopus},
    }
  • S. Nikolov, H. Fabritius, M. Friák, and D. Raabe, “Integrated multiscale modeling approach for hierarchical biological nanocomposites applied to lobster cuticle,” Bulgarian Chemical Communications, vol. 47, pp. 424-433, 2015.
    [Bibtex]
    @ARTICLE{Nikolov2015424,
    author={Nikolov, S. and Fabritius, H. and Friák, M. and Raabe, D.},
    title={Integrated multiscale modeling approach for hierarchical biological nanocomposites applied to lobster cuticle},
    journal={Bulgarian Chemical Communications},
    year={2015},
    volume={47},
    pages={424-433},
    note={cited By 3},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976421915&partnerID=40&md5=c066bed686cd2830463449e09d0cb40f},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] O. Güvenç, F. Roters, T. Hickel, and M. Bambach, “ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance,” JOM, vol. 67, iss. 1, pp. 120-128, 2015.
    [Bibtex]
    @ARTICLE{Güvenç2015120,
    author={Güvenç, O. and Roters, F. and Hickel, T. and Bambach, M.},
    title={ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance},
    journal={JOM},
    year={2015},
    volume={67},
    number={1},
    pages={120-128},
    doi={10.1007/s11837-014-1192-8},
    note={cited By 18},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925534971&doi=10.1007%2fs11837-014-1192-8&partnerID=40&md5=78fb54cd4ce44734f6b2b34111987b2d},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters, “Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials,” International Journal of Plasticity, vol. 66, pp. 31-45, 2015.
    [Bibtex]
    @ARTICLE{Shanthraj201531,
    author={Shanthraj, P. and Eisenlohr, P. and Diehl, M. and Roters, F.},
    title={Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials},
    journal={International Journal of Plasticity},
    year={2015},
    volume={66},
    pages={31-45},
    doi={10.1016/j.ijplas.2014.02.006},
    note={cited By 84},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922197062&doi=10.1016%2fj.ijplas.2014.02.006&partnerID=40&md5=d69ac212b84bc8f258880e9e6317f58a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. Zhang, H. Li, P. Eisenlohr, W. Liu, C. J. Boehlert, M. A. Crimp, and T. R. Bieler, “Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn,” International Journal of Plasticity, vol. 69, pp. 21-35, 2015.
    [Bibtex]
    @ARTICLE{Zhang201521,
    author={Zhang, C. and Li, H. and Eisenlohr, P. and Liu, W. and Boehlert, C.J. and Crimp, M.A. and Bieler, T.R.},
    title={Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn},
    journal={International Journal of Plasticity},
    year={2015},
    volume={69},
    pages={21-35},
    doi={10.1016/j.ijplas.2015.01.003},
    note={cited By 54},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923329116&doi=10.1016%2fj.ijplas.2015.01.003&partnerID=40&md5=be9d26d799058ff36c946266e096257a},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] D. Ma, P. Eisenlohr, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe, “Analytical bounds of in-plane Young’s modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures,” Computational Materials Science, vol. 109, pp. 323-329, 2015.
    [Bibtex]
    @Article{Ma2015,
    author = {Duancheng Ma and Philip Eisenlohr and Pratheek Shanthraj and Martin Diehl and Franz Roters and Dierk Raabe},
    journal = {Computational Materials Science},
    title = {Analytical bounds of in-plane Young’s modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures},
    year = {2015},
    issn = {0927-0256},
    pages = {323 - 329},
    volume = {109},
    abstract = {In this study, we focus on the interplay between the honeycomb structure and the crystallographic orientation. Specifically, the in-plane Young’s moduli of monocrystalline stochastic honeycombs are calculated by a numerical and an analytical approach. The in-plane Young’s moduli of the honeycombs were calculated numerically using a solution scheme for the full-field mechanical equilibrium based on spectral methods and anisotropic crystal elasticity. The analytical approach formulates two alternative assumptions, i.e. uniform force and uniform strain per strut, considers the elastic anisotropy of the base material, and depends on the two-variable distribution of the strut length and inclination angle as the structural parameters characterizing the stochastic honeycombs. The uniform strain assumption agrees closely with the numerical simulation results and constitutes an improvement compared to analytical solutions proposed in previous studies.},
    doi = {https://doi.org/10.1016/j.commatsci.2015.07.041},
    keywords = {Honeycomb, Cellular material, Anisotropic elasticity, Crystallographic orientation},
    url = {http://www.sciencedirect.com/science/article/pii/S0927025615004516},
    }

2014

  • [DOI] F. Meier, C. Schwarz, and E. Werner, “Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits,” Computational Materials Science, vol. 94, iss. C, pp. 122-131, 2014.
    [Bibtex]
    @ARTICLE{Meier2014122,
    author={Meier, F. and Schwarz, C. and Werner, E.},
    title={Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits},
    journal={Computational Materials Science},
    year={2014},
    volume={94},
    number={C},
    pages={122-131},
    doi={10.1016/j.commatsci.2014.03.020},
    note={cited By 14},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926277936&doi=10.1016%2fj.commatsci.2014.03.020&partnerID=40&md5=429949c7ad8dfb8c99c883644df43c0c},
    document_type={Article},
    source={Scopus},
    }
  • M. Demura, D. Raabe, F. Roters, P. Eisenlohr, Y. Xu, T. Hirano, and K. Kishida, “Slip system analysis in the cold rolling of a Ni3Al single crystal,” Materials Science Forum, vol. 783-786, pp. 1111-1116, 2014.
    [Bibtex]
    @ARTICLE{Demura20141111,
    author={Demura, M. and Raabe, D. and Roters, F. and Eisenlohr, P. and Xu, Y. and Hirano, T. and Kishida, K.},
    title={Slip system analysis in the cold rolling of a Ni3Al single crystal},
    journal={Materials Science Forum},
    year={2014},
    volume={783-786},
    pages={1111-1116},
    note={cited By 1},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904543366&partnerID=40&md5=518393546d612b593aa948b1de291f45},
    document_type={Conference Paper},
    source={Scopus},
    }
  • [DOI] C. C. Tasan, J. P. M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, “Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations,” International Journal of Plasticity, vol. 63, pp. 198-210, 2014.
    [Bibtex]
    @ARTICLE{Tasan2014198,
    author={Tasan, C.C. and Hoefnagels, J.P.M. and Diehl, M. and Yan, D. and Roters, F. and Raabe, D.},
    title={Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations},
    journal={International Journal of Plasticity},
    year={2014},
    volume={63},
    pages={198-210},
    doi={10.1016/j.ijplas.2014.06.004},
    note={cited By 238},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922689409&doi=10.1016%2fj.ijplas.2014.06.004&partnerID=40&md5=2b12a6cf1ec50327d1b7490aa496dfc0},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] R. Kebriaei, I. N. Vladimirov, and S. Reese, “Joining of the alloys AA1050 and AA5754 – Experimental characterization and multiscale modeling based on a cohesive zone element technique,” Journal of Materials Processing Technology, vol. 214, iss. 10, pp. 2146-2155, 2014.
    [Bibtex]
    @ARTICLE{Kebriaei20142146,
    author={Kebriaei, R. and Vladimirov, I.N. and Reese, S.},
    title={Joining of the alloys AA1050 and AA5754 - Experimental characterization and multiscale modeling based on a cohesive zone element technique},
    journal={Journal of Materials Processing Technology},
    year={2014},
    volume={214},
    number={10},
    pages={2146-2155},
    doi={10.1016/j.jmatprotec.2014.03.014},
    note={cited By 14},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84902280333&doi=10.1016%2fj.jmatprotec.2014.03.014&partnerID=40&md5=8488a98a4279b91c7874b6dae86c2759},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, and D. Raabe, “In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys,” Acta Materialia, vol. 80, pp. 77-93, 2014.
    [Bibtex]
    @ARTICLE{Wang201477,
    author={Wang, F. and Sandlöbes, S. and Diehl, M. and Sharma, L. and Roters, F. and Raabe, D.},
    title={In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys},
    journal={Acta Materialia},
    year={2014},
    volume={80},
    pages={77-93},
    doi={10.1016/j.actamat.2014.07.048},
    note={cited By 38},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906709190&doi=10.1016%2fj.actamat.2014.07.048&partnerID=40&md5=10ddcc9e8e31087cedc1c9496a55ca88},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe, “Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys,” Acta Materialia, vol. 81, pp. 386-400, 2014.
    [Bibtex]
    @ARTICLE{Tasan2014386,
    author={Tasan, C.C. and Diehl, M. and Yan, D. and Zambaldi, C. and Shanthraj, P. and Roters, F. and Raabe, D.},
    title={Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys},
    journal={Acta Materialia},
    year={2014},
    volume={81},
    pages={386-400},
    doi={10.1016/j.actamat.2014.07.071},
    note={cited By 177},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908214186&doi=10.1016%2fj.actamat.2014.07.071&partnerID=40&md5=a67c902b9379d476120f357b96b629fa},
    document_type={Article},
    source={Scopus},
    }

2013

  • [DOI] F. Roters, M. Diehl, P. Eisenlohr, and D. Raabe, Crystal Plasticity Modeling, , 2013.
    [Bibtex]
    @BOOK{Roters201341,
    author={Roters, F. and Diehl, M. and Eisenlohr, P. and Raabe, D.},
    title={Crystal Plasticity Modeling},
    journal={Microstructural Design of Advanced Engineering Materials},
    year={2013},
    pages={41-67},
    doi={10.1002/9783527652815.ch03},
    note={cited By 2},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017337495&doi=10.1002%2f9783527652815.ch03&partnerID=40&md5=05eb35dd1090d5ef634e216e8c9c05e6},
    document_type={Book Chapter},
    source={Scopus},
    }
  • [DOI] P. Eisenlohr, M. Diehl, R. A. Lebensohn, and F. Roters, “A spectral method solution to crystal elasto-viscoplasticity at finite strains,” International Journal of Plasticity, vol. 46, pp. 37-53, 2013.
    [Bibtex]
    @ARTICLE{Eisenlohr201337,
    author={Eisenlohr, P. and Diehl, M. and Lebensohn, R.A. and Roters, F.},
    title={A spectral method solution to crystal elasto-viscoplasticity at finite strains},
    journal={International Journal of Plasticity},
    year={2013},
    volume={46},
    pages={37-53},
    doi={10.1016/j.ijplas.2012.09.012},
    note={cited By 198},
    url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876895772&doi=10.1016%2fj.ijplas.2012.09.012&partnerID=40&md5=8c0de915b37ef8083f3e85d983384dc8},
    document_type={Article},
    source={Scopus},
    }
  • [DOI] A. Nonn, “Microstructure-based modeling of high-strength linepipe steels.” 2013.
    [Bibtex]
    @InProceedings{Nonn2013,
    author = {Nonn, Aida},
    title = {Microstructure-based modeling of high-strength linepipe steels},
    year = {2013},
    month = {10},
    doi = {10.13140/2.1.2797.4404},
    }
  • O. Güvenc, T. Henke, G. Laschet, B. Böttger, M. Apel, M. Bambach, and G. Hirt, “MODELING OF STATIC RECRYSTALLIZATION KINETICS BY COUPLING CRYSTAL PLASTICITY FEM AND MULTIPHASE FIELD CALCULATIONS,” COMPUTER METHODS IN MATERIALS SCIENCE, vol. 13, iss. 2, pp. 368-374, 2013.
    [Bibtex]
    @Article{,
    author = {Güvenc, O. and Henke, T. and Laschet, G. and Böttger, B. and Apel, M. and Bambach, M. and Hirt, G.},
    journal = {COMPUTER METHODS IN MATERIALS SCIENCE},
    title = {MODELING OF STATIC RECRYSTALLIZATION KINETICS BY COUPLING CRYSTAL PLASTICITY FEM AND MULTIPHASE FIELD CALCULATIONS},
    year = {2013},
    number = {2},
    pages = {368-374},
    volume = {13},
    url = {http://www.cmms.agh.edu.pl/repo_file.php?f_id=456},
    }